Biology » Viruses » Viral Evolution, Morphology, and Classification

Viral Morphology

Viral Morphology

Viruses are acellular, meaning they are biological entities that do not have a cellular structure. They therefore lack most of the components of cells, such as organelles, ribosomes, and the plasma membrane. A virion consists of a nucleic acid core, an outer protein coating or capsid, and sometimes an outer envelope made of protein and phospholipid membranes derived from the host cell.

Viruses may also contain additional proteins, such as enzymes. The most obvious difference between members of viral families is their morphology, which is quite diverse. An interesting feature of viral complexity is that the complexity of the host does not correlate with the complexity of the virion. Some of the most complex virion structures are observed in bacteriophages, viruses that infect the simplest living organisms, bacteria.

Morphology

Viruses come in many shapes and sizes, but these are consistent and distinct for each viral family. All virions have a nucleic acid genome covered by a protective layer of proteins, called a capsid. The capsid is made up of protein subunits called capsomeres. Some viral capsids are simple polyhedral “spheres,” whereas others are quite complex in structure.

In general, the shapes of viruses are classified into four groups: filamentous, isometric (or icosahedral), enveloped, and head and tail. Filamentous viruses are long and cylindrical. Many plant viruses are filamentous, including TMV. Isometric viruses have shapes that are roughly spherical, such as poliovirus or herpesviruses. Enveloped viruses have membranes surrounding capsids. Animal viruses, such as HIV, are frequently enveloped. Head and tail viruses infect bacteria and have a head that is similar to icosahedral viruses and a tail shape like filamentous viruses.

Many viruses use some sort of glycoprotein to attach to their host cells via molecules on the cell called viral receptors (see the figure below). For these viruses, attachment is a requirement for later penetration of the cell membrane, so they can complete their replication inside the cell. The receptors that viruses use are molecules that are normally found on cell surfaces and have their own physiological functions. Viruses have simply evolved to make use of these molecules for their own replication. For example, HIV uses the CD4 molecule on T lymphocytes as one of its receptors. CD4 is a type of molecule called a cell adhesion molecule, which functions to keep different types of immune cells in close proximity to each other during the generation of a T lymphocyte immune response.

 In the illustration a viral receptor on the surface of a KSHV virus is attached to an xCT receptor embedded in the plasma membrane.

The KSHV virus binds the xCT receptor on the surface of human cells. xCT receptors protect cells against stress. Stressed cells express more xCT receptors than non-stressed cells. The KSHV virion causes cells to become stressed, thereby increasing expression of the receptor to which it binds. (credit: modification of work by NIAID, NIH)

Among the most complex virions known, the T4 bacteriophage, which infects the Escherichia coli bacterium, has a tail structure that the virus uses to attach to host cells and a head structure that houses its DNA.

Adenovirus, a non-enveloped animal virus that causes respiratory illnesses in humans, uses glycoprotein spikes protruding from its capsomeres to attach to host cells. Non-enveloped viruses also include those that cause polio (poliovirus), plantar warts (papillomavirus), and hepatitis A (hepatitis A virus).

Enveloped virions like HIV, the causative agent in AIDS, consist of nucleic acid (RNA in the case of HIV) and capsid proteins surrounded by a phospholipid bilayer envelope and its associated proteins. Glycoproteins embedded in the viral envelope are used to attach to host cells. Other envelope proteins are the matrix proteins that stabilize the envelope and often play a role in the assembly of progeny virions. Chicken pox, influenza, and mumps are examples of diseases caused by viruses with envelopes. Because of the fragility of the envelope, non-enveloped viruses are more resistant to changes in temperature, pH, and some disinfectants than enveloped viruses.

Overall, the shape of the virion and the presence or absence of an envelope tell us little about what disease the virus may cause or what species it might infect, but they are still useful means to begin viral classification (see the figure below).

Art Connection

Illustration a shows bacteriophage T4, which houses its DNA genome in a hexagonal head. A long, straight tail extends from the bottom of the head. Tail fibers attached to the base of the tail are bent, like spider legs. In b, adenovirus houses its DNA genome in a round capsid made from many small capsomere subunits. Glycoproteins extend from the capsomere, like pins from a pincushion. In c, the HIV retrovirus houses its RNA genome and an enzyme called reverse transcriptase in a bullet-shaped capsid. A spherical viral envelope, lined with matrix proteins, surrounds the capsid. Glycoproteins extend from the viral envelope.

Viruses can be either complex in shape or relatively simple. This figure shows three relatively complex virions: the bacteriophage T4, with its DNA-containing head group and tail fibers that attach to host cells; adenovirus, which uses spikes from its capsid to bind to host cells; and HIV, which uses glycoproteins embedded in its envelope to bind to host cells. Notice that HIV has proteins called matrix proteins, internal to the envelope, which help stabilize virion shape. (credit “bacteriophage, adenovirus”: modification of work by NCBI, NIH; credit “HIV retrovirus”: modification of work by NIAID, NIH)

Which of the following statements about virus structure is true?

  1. All viruses are encased in a viral membrane.
  2. The capsomere is made up of small protein subunits called capsids.
  3. DNA is the genetic material in all viruses.
  4. Glycoproteins help the virus attach to the host cell.

Answer

Glycoproteins help the virus attach to the host cell.

Types of Nucleic Acid

Unlike nearly all living organisms that use DNA as their genetic material, viruses may use either DNA or RNA as theirs. The virus core contains the genome or total genetic content of the virus. Viral genomes tend to be small, containing only those genes that encode proteins that the virus cannot get from the host cell. This genetic material may be single- or double-stranded. It may also be linear or circular. While most viruses contain a single nucleic acid, others have genomes that have several, which are called segments.

In DNA viruses, the viral DNA directs the host cell’s replication proteins to synthesize new copies of the viral genome and to transcribe and translate that genome into viral proteins. DNA viruses cause human diseases, such as chickenpox, hepatitis B, and some venereal diseases, like herpes and genital warts.

RNA viruses contain only RNA as their genetic material. To replicate their genomes in the host cell, the RNA viruses encode enzymes that can replicate RNA into DNA, which cannot be done by the host cell. These RNA polymerase enzymes are more likely to make copying errors than DNA polymerases, and therefore often make mistakes during transcription. For this reason, mutations in RNA viruses occur more frequently than in DNA viruses. This causes them to change and adapt more rapidly to their host. Human diseases caused by RNA viruses include hepatitis C, measles, and rabies.

[Attributions and Licenses]


This is a lesson from the tutorial, Viruses and you are encouraged to log in or register, so that you can track your progress.

Log In

Share Thoughts