Biology » Vertebrates » Amphibians

Modern Amphibians

Modern Amphibians

Amphibia comprises an estimated 6,770 extant species that inhabit tropical and temperate regions around the world. Amphibians can be divided into three clades: Urodela (“tailed-ones”), the salamanders; Anura (“tail-less ones”), the frogs; and Apoda (“legless ones”), the caecilians.

Urodela: Salamanders

Salamanders are amphibians that belong to the order Urodela. Living salamanders (see the figure below) include approximately 620 species, some of which are aquatic, other terrestrial, and some that live on land only as adults. Adult salamanders usually have a generalized tetrapod body plan with four limbs and a tail. They move by bending their bodies from side to side, called lateral undulation, in a fish-like manner while “walking” their arms and legs fore and aft. It is thought that their gait is similar to that used by early tetrapods. Respiration differs among different species. The majority of salamanders are lungless, and respiration occurs through the skin or through external gills. Some terrestrial salamanders have primitive lungs; a few species have both gills and lungs.

Unlike frogs, virtually all salamanders rely on internal fertilization of the eggs. The only male amphibians that possess copulatory structures are the caecilians, so fertilization among salamanders typically involves an elaborate and often prolonged courtship. Such a courtship allows the successful transfer of sperm from male to female via a spermatophore. Development in many of the most highly evolved salamanders, which are fully terrestrial, occurs during a prolonged egg stage, with the eggs guarded by the mother. During this time, the gilled larval stage is found only within the egg capsule, with the gills being resorbed, and metamorphosis being completed, before hatching. Hatchlings thus resemble tiny adults.

The photo shows a black salamander with bright yellow spots.

Most salamanders have legs and a tail, but respiration varies among species. (credit: Valentina Storti)

You can watch the video below about an unusually large salamander species.

Anura: Frogs

Frogs are amphibians that belong to the order Anura (see the figure below). Anurans are among the most diverse groups of vertebrates, with approximately 5,965 species that occur on all of the continents except Antarctica. Anurans have a body plan that is more specialized for movement. Adult frogs use their hind limbs to jump on land. Frogs have a number of modifications that allow them to avoid predators, including skin that acts as camouflage. Many species of frogs and salamanders also release defensive chemicals from glands in the skin that are poisonous to predators.

The photo shows a big, bright green frog sitting on a branch.

The Australian green tree frog is a nocturnal predator that lives in the canopies of trees near a water source.

Frog eggs are fertilized externally, and like other amphibians, frogs generally lay their eggs in moist environments. A moist environment is required as eggs lack a shell and thus dehydrate quickly in dry environments. Frogs demonstrate a great diversity of parental behaviors, with some species laying many eggs and exhibiting little parental care, to species that carry eggs and tadpoles on their hind legs or backs. The life cycle of frogs, as other amphibians, consists of two distinct stages: the larval stage followed by metamorphosis to an adult stage.

The larval stage of a frog, the tadpole, is often a filter-feeding herbivore. Tadpoles usually have gills, a lateral line system, long-finned tails, and lack limbs. At the end of the tadpole stage, frogs undergo metamorphosis into the adult form (see the figure below). During this stage, the gills, tail, and lateral line system disappear, and four limbs develop. The jaws become larger and are suited for carnivorous feeding, and the digestive system transforms into the typical short gut of a predator. An eardrum and air-breathing lungs also develop. These changes during metamorphosis allow the larvae to move onto land in the adult stage.

The photo shows a frog with a long tail from the tadpole stage.

A juvenile frog metamorphoses into a frog. Here, the frog has started to develop limbs, but its tadpole tail is still evident.

Apoda: Caecilians

An estimated 185 species comprise caecilians, a group of amphibians that belong to the order Apoda. Although they are vertebrates, a complete lack of limbs leads to their resemblance to earthworms in appearance. They are adapted for a soil-burrowing or aquatic lifestyle, and they are nearly blind. These animals are found in the tropics of South America, Africa, and Southern Asia. They have vestigial limbs, evidence that they evolved from a legged ancestor.

Evolution Connection: The Paleozoic Era and the Evolution of Vertebrates

The climate and geography of Earth was vastly different during the Paleozoic Era, when vertebrates arose, as compared to today. The Paleozoic spanned from approximately 542 to 251 million years ago. The landmasses on Earth were very different from those of today. Laurentia and Gondwana were continents located near the equator that subsumed much of the current day landmasses in a different configuration (see the figure below).

At this time, sea levels were very high, probably at a level that hasn’t been reached since. As the Paleozoic progressed, glaciations created a cool global climate, but conditions warmed near the end of the first half of the Paleozoic. During the latter half of the Paleozoic, the landmasses began moving together, with the initial formation of a large northern block called Laurasia. This contained parts of what is now North America, along with Greenland, parts of Europe, and Siberia. Eventually, a single supercontinent, called Pangaea, was formed, starting in the latter third of the Paleozoic. Glaciations then began to affect Pangaea’s climate, affecting the distribution of vertebrate life.

A world map shows two continents, Gondwana and Laurentia, which are shaped very differently from the continents of today. Gondwana was made up of two smaller subcontinents separated by a narrow sea. One continent contained modern Antarctica, and the other contained parts of Africa.

During the Paleozoic Era, around 550 million years ago, the continent Gondwana formed. Both Gondwana and the continent Laurentia were located near the equator.

During the early Paleozoic, the amount of carbon dioxide in the atmosphere was much greater than it is today. This may have begun to change later, as land plants became more common. As the roots of land plants began to infiltrate rock and soil began to form, carbon dioxide was drawn out of the atmosphere and became trapped in the rock. This reduced the levels of carbon dioxide and increased the levels of oxygen in the atmosphere, so that by the end of the Paleozoic, atmospheric conditions were similar to those of today.

As plants became more common through the latter half of the Paleozoic, microclimates began to emerge and ecosystems began to change. As plants and ecosystems continued to grow and become more complex, vertebrates moved from the water to land. The presence of shoreline vegetation may have contributed to the movement of vertebrates onto land. One hypothesis suggests that the fins of aquatic vertebrates were used to maneuver through this vegetation, providing a precursor to the movement of fins on land and the development of limbs.

The late Paleozoic was a time of diversification of vertebrates, as amniotes emerged and became two different lines that gave rise, on one hand, to mammals, and, on the other hand, to reptiles and birds. Many marine vertebrates became extinct near the end of the Devonian period, which ended about 360 million years ago, and both marine and terrestrial vertebrates were decimated by a mass extinction in the early Permian period about 250 million years ago.

You can watch the video below titled “Earth’s Paleogeography: Continental Movements Through Time” to see changes in Earth as life evolved.

[Attributions and Licenses]


This is a lesson from the tutorial, Vertebrates and you are encouraged to log in or register, so that you can track your progress.

Log In

Share Thoughts