## Key Concepts

**Rational Expression Addition**- If \(p,q,\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}r\) are polynomials where \(r\ne 0\), then
\(\frac{p}{r}+\frac{q}{r}=\frac{p+q}{r}\)

- To add rational expressions with a common denominator, add the numerators and place the sum over the common denominator.

- If \(p,q,\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}r\) are polynomials where \(r\ne 0\), then
**Rational Expression Subtraction**- If \(p,q,\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}r\) are polynomials where \(r\ne 0\), then
\(\frac{p}{r}-\frac{q}{r}=\frac{p-q}{r}\)

- To subtract rational expressions, subtract the numerators and place the difference over the common denominator.

- If \(p,q,\phantom{\rule{0.2em}{0ex}}\text{and}\phantom{\rule{0.2em}{0ex}}r\) are polynomials where \(r\ne 0\), then