Mathematics » Polynomials II » Divide Monomials

# Dividing Monomials Summary

## Key Concepts

• Quotient Property for Exponents:
• If $$a$$ is a real number, $$a\ne 0$$, and $$m,n$$ are whole numbers, then:

$$\frac{{a}^{m}}{{a}^{n}}={a}^{m-n},m>n\phantom{\rule{0.5em}{0ex}}\text{and}\phantom{\rule{0.5em}{0ex}}\frac{{a}^{m}}{{a}^{n}}=\frac{1}{{a}^{m-n}},n>m$$

• Zero Exponent
• If $$a$$ is a non-zero number, then $${a}^{0}=1$$.
• Quotient to a Power Property for Exponents:
• If $$a$$ and $$b$$ are real numbers, $$b\ne 0,$$ and $$m$$ is a counting number, then:

$${\left(\frac{a}{b}\right)}^{m}=\frac{{a}^{m}}{{b}^{m}}$$

• To raise a fraction to a power, raise the numerator and denominator to that power.
• Summary of Exponent Properties
• If $$a,b$$ are real numbers and $$m,n$$ are whole numbers, then

$$\begin{array}{ccccc}\mathbf{\text{Product Property}}\hfill & & \hfill {a}^{m}·{a}^{n}& =\hfill & {a}^{m+n}\hfill \\ \mathbf{\text{Power Property}}\hfill & & \hfill {\left({a}^{m}\right)}^{n}& =\hfill & {a}^{m·n}\hfill \\ \mathbf{\text{Product to a Power}}\hfill & & \hfill {\left(ab\right)}^{m}& =\hfill & {a}^{m}{b}^{m}\hfill \\ \mathbf{\text{Quotient Property}}\hfill & & \hfill \frac{{a}^{m}}{{b}^{m}}& =\hfill & {a}^{m-n},a\ne 0,m>n\hfill \\ & & \hfill \frac{{a}^{m}}{{a}^{n}}& =\hfill & \frac{1}{{a}^{n-m}},a\ne 0,n>m\hfill \\ \mathbf{\text{Zero Exponent Definition}}\hfill & & \hfill {a}^{o}& =\hfill & 1,a\ne 0\hfill \\ \mathbf{\text{Quotient to a Power Property}}\hfill & & \hfill {\left(\frac{a}{b}\right)}^{m}& =\hfill & \frac{{a}^{m}}{{b}^{m}},b\ne 0\hfill \end{array}$$

Continue With the Mobile App | Available on Google Play

This is a lesson from the tutorial, Polynomials II and you are encouraged to log in or register, so that you can track your progress.