Biology » Phylogenies and the History of Life » Determining Evolutionary Relationships

Two Options For Similarities

Determining Evolutionary Relationships

Scientists must collect accurate information that allows them to make evolutionary connections among organisms. Similar to detective work, scientists must use evidence to uncover the facts. In the case of phylogeny, evolutionary investigations focus on two types of evidence: morphologic (form and function) and genetic.

Two Options for Similarities

In general, organisms that share similar physical features and genomes tend to be more closely related than those that do not. Such features that overlap both morphologically (in form) and genetically are referred to as homologous structures; they stem from developmental similarities that are based on evolution. For example, the bones in the wings of bats and birds have homologous structures (see the figure below).

 Photo a shows a bird in flight with a corresponding drawing of a bird wing. Photo b is a bat in flight with a corresponding drawing of a bat wing. Both the bird wing and the bat wing share common bones, analogous to the bones in the arms and fingers of humans. However, in the bat wing, the finger bones are long and separate and form a scaffolding on which the wing’s membrane is stretched. In the bird wing, the finger bones are short and fused together at the front of the wing.

Bat and bird wings are homologous structures, indicating that bats and birds share a common evolutionary past. (credit a: modification of work by Steve Hillebrand, USFWS; credit b: modification of work by U.S. DOI BLM)

Notice it is not simply a single bone, but rather a grouping of several bones arranged in a similar way. The more complex the feature, the more likely any kind of overlap is due to a common evolutionary past. Imagine two people from different countries both inventing a car with all the same parts and in exactly the same arrangement without any previous or shared knowledge. That outcome would be highly improbable. However, if two people both invented a hammer, it would be reasonable to conclude that both could have the original idea without the help of the other. The same relationship between complexity and shared evolutionary history is true for homologous structures in organisms.

Misleading Appearances

Some organisms may be very closely related, even though a minor genetic change caused a major morphological difference to make them look quite different. Similarly, unrelated organisms may be distantly related, but appear very much alike. This usually happens because both organisms were in common adaptations that evolved within similar environmental conditions. When similar characteristics occur because of environmental constraints and not due to a close evolutionary relationship, it is called an analogy or homoplasy. For example, insects use wings to fly like bats and birds, but the wing structure and embryonic origin is completely different. These are called analogous structures (see the figure below).

Similar traits can be either homologous or analogous. Homologous structures share a similar embryonic origin; analogous organs have a similar function. For example, the bones in the front flipper of a whale are homologous to the bones in the human arm. These structures are not analogous. The wings of a butterfly and the wings of a bird are analogous but not homologous. Some structures are both analogous and homologous: the wings of a bird and the wings of a bat are both homologous and analogous. Scientists must determine which type of similarity a feature exhibits to decipher the phylogeny of the organisms being studied.

 Photo a shows a bat wing, photo b shows a bird wing, and photo c shows a honeybee wing, and all three are similar in overall shape. However, the bird wing and bat wing are both made from homologous bones that are similar in appearance. The honeybee wing is made of a thin, membranous material rather than bone.

The (c) wing of a honeybee is similar in shape to a (b) bird wing and (a) bat wing, and it serves the same function. However, the honeybee wing is not composed of bones and has a distinctly different structure and embryonic origin. These wing types (insect versus bat and bird) illustrate an analogy—similar structures that do not share an evolutionary history. (credit a: modification of work by Steve Hillebrand, USFWS; credit b: modification of work by U.S. DOI BLM; credit c: modification of work by Jon Sullivan)

Resource:

This website has several examples to show how appearances can be misleading in understanding the phylogenetic relationships of organisms.

Molecular Comparisons

With the advancement of DNA technology, the area of molecular systematics, which describes the use of information on the molecular level including DNA analysis, has blossomed. New computer programs not only confirm many earlier classified organisms, but also uncover previously made errors. As with physical characteristics, even the DNA sequence can be tricky to read in some cases. For some situations, two very closely related organisms can appear unrelated if a mutation occurred that caused a shift in the genetic code. An insertion or deletion mutation would move each nucleotide base over one place, causing two similar codes to appear unrelated.

Sometimes two segments of DNA code in distantly related organisms randomly share a high percentage of bases in the same locations, causing these organisms to appear closely related when they are not. For both of these situations, computer technologies have been developed to help identify the actual relationships, and, ultimately, the coupled use of both morphologic and molecular information is more effective in determining phylogeny.

Evolution Connection: Why Does Phylogeny Matter?

Evolutionary biologists could list many reasons why understanding phylogeny is important to everyday life in human society. For botanists, phylogeny acts as a guide to discovering new plants that can be used to benefit people. Think of all the ways humans use plants—food, medicine, and clothing are a few examples. If a plant contains a compound that is effective in treating cancer, scientists might want to examine all of the relatives of that plant for other useful drugs.

A research team in China identified a segment of DNA thought to be common to some medicinal plants in the family Fabaceae (the legume family) and worked to identify which species had this segment (see the figure below). After testing plant species in this family, the team found a DNA marker (a known location on a chromosome that enabled them to identify the species) present. Then, using the DNA to uncover phylogenetic relationships, the team could identify whether a newly discovered plant was in this family and assess its potential medicinal properties.

 The illustration shows a Dalbergia sissoo plant, which is short with pods and teardrop-shaped leaves.

Dalbergia sissoo (D. sissoo) is in the Fabaceae, or legume family. Scientists found that D. sissoo shares a DNA marker with species within the Fabaceae family that have antifungal properties. Subsequently, D. sissoo was shown to have fungicidal activity, supporting the idea that DNA markers can be used to screen for plants with potential medicinal properties.

[Attributions and Licenses]


This is a lesson from the tutorial, Phylogenies and the History of Life and you are encouraged to log in or register, so that you can track your progress.

Log In

Share Thoughts