Physics » Newton's Laws » Newton's Laws

Newton’s First Law

Newton’s Laws

In this lesson and the next set of lessons, we will look at the effect of forces on objects and how we can make things move. This will link together what you have learnt about motion and what you have learnt about forces.

Newton’s First Law

Sir Isaac Newton was a scientist who lived in England (1642-1727) who was interested in the motion of objects under various conditions. He suggested that a stationary object will remain stationary unless a force acts on it and that a moving object will continue moving unless a force slows it down, speeds it up or changes its direction of motion. From this he formulated what is known as Newton’s first law of motion:

Definition: Newton’s First Law of Motion

An object continues in a state of rest or uniform motion (motion with a constant velocity) unless it is acted on by an unbalanced (net or resultant) force.

This property of an object, to continue in its current state of motion unless acted upon by a net force, is called inertia.

Let us consider the following situations:

An ice skater pushes herself away from the side of the ice rink and skates across the ice. She will continue to move in a straight line across the ice unless something stops her. Objects are also like that. If we kick a soccer ball across a soccer field, according to Newton’s first law, the soccer ball should keep on moving forever! However, in real life this does not happen. Is Newton’s Law wrong? Not really. Newton’s first law applies to situations where there aren’t any external forces present. This means that friction is not present. In the case of the ice skater, the friction between the skates and the ice is very little and she will continue moving for quite a distance. In the case of the soccer ball, air resistance (friction between the air and the ball) and friction between the grass and the ball is present and this will slow the ball down.

Optional Video on Newton’s First Law of Motion

[Attributions and Licenses]

This is a lesson from the tutorial, Newton's Laws and you are encouraged to log in or register, so that you can track your progress.

Log In

Share Thoughts