Mathematics » Introducing Polynomials » Integer Exponents and Scientific Notation

Key Concepts

Key Concepts

  • Summary of Exponent Properties
    • If \(a,b\) are real numbers and \(m,n\) are integers, then
      \(\begin{array}{cccc}\mathbf{\text{Product Property}}\hfill & & & {a}^{m}·{a}^{n}={a}^{m+n}\hfill \\ \mathbf{\text{Power Property}}\hfill & & & {\left({a}^{m}\right)}^{n}={a}^{m·n}\hfill \\ \mathbf{\text{Product to a Power Property}}\hfill & & & {\left(ab\right)}^{m}={a}^{m}{b}^{m}\hfill \\ \mathbf{\text{Quotient Property}}\hfill & & & \frac{{a}^{m}}{{a}^{n}}={a}^{m-n},\phantom{\rule{0.2em}{0ex}}a\ne 0\hfill \\ \mathbf{\text{Zero Exponent Property}}\hfill & & & {a}^{0}=1,\phantom{\rule{0.2em}{0ex}}a\ne 0\hfill \\ \mathbf{\text{Quotient to a Power Property}}\hfill & & & {\left(\frac{a}{b}\right)}^{m}=\frac{{a}^{m}}{{b}^{m}},\phantom{\rule{0.2em}{0ex}}b\ne 0\hfill \\ \mathbf{\text{Definition of Negative Exponent}}\hfill & & & {a}^{-n}=\frac{1}{{a}^{n}}\hfill \end{array}\)

  • Convert from Decimal Notation to Scientific Notation: To convert a decimal to scientific notation:
    1. Move the decimal point so that the first factor is greater than or equal to 1 but less than 10.
    2. Count the number of decimal places, \(n\), that the decimal point was moved.
    3. Write the number as a product with a power of 10.
      • If the original number is greater than 1, the power of 10 will be \({10}^{n}\).
      • If the original number is between 0 and 1, the power of 10 will be \({10}^{n}\).
    4. Check.
  • Convert Scientific Notation to Decimal Form: To convert scientific notation to decimal form:
    1. Determine the exponent, \(n\), on the factor 10.
    2. Move the decimal \(n\) places, adding zeros if needed.
      • If the exponent is positive, move the decimal point \(n\) places to the right.
      • If the exponent is negative, move the decimal point \(|n|\) places to the left.
    3. Check.

Glossary

negative exponent

If \(n\) is a positive integer and \(a\ne 0\), then \({a}^{-n}=\frac{1}{{a}^{n}}\).

scientific notation

A number expressed in

scientific notation

when it is of the form \(a\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{n},\) where \(a\ge 1\) and \(a<10,\) and \(n\) is an integer.

[Attributions and Licenses]


This is a lesson from the tutorial, Introducing Polynomials and you are encouraged to log in or register, so that you can track your progress.

Log In

Do NOT follow this link or you will be banned from the site!