Constructing An Animal Phylogenetic Tree

Constructing an Animal Phylogenetic Tree

The current understanding of evolutionary relationships between animal, or Metazoa, phyla begins with the distinction between “true” animals with true differentiated tissues, called Eumetazoa, and animal phyla that do not have true differentiated tissues (such as the sponges), called Parazoa. Both Parazoa and Eumetazoa evolved from a common ancestral organism that resembles the modern-day protists called choanoflagellates. These protist cells strongly resemble the sponge choanocyte cells today (see the figure below).

The image on the left shows a choanoflagellate, which is a single-celled protest. The image on the right shows a sponge choanocyte cell that lines in inside of a sponge. The two cells appear identical. Both are egg-shaped with a cone at the back end. A flagellum juts out from the wide part of the cone.

Cells of the protist choanoflagellate resemble sponge choanocyte cells. Beating of choanocyte flagella draws water through the sponge so that nutrients can be extracted and waste removed.

Eumetazoa are subdivided into radially symmetrical animals and bilaterally symmetrical animals, and are thus classified into clade Bilateria or Radiata, respectively. As mentioned earlier, the cnidarians and ctenophores are animal phyla with true radial symmetry. All other Eumetazoa are members of the Bilateria clade. The bilaterally symmetrical animals are further divided into deuterostomes (including chordates and echinoderms) and two distinct clades of protostomes (including ecdysozoans and lophotrochozoans) (see figure (a) and (b) below). Ecdysozoa includes nematodes and arthropods; they are so named for a commonly found characteristic among the group: exoskeletal molting (termed ecdysis). Lophotrochozoa is named for two structural features, each common to certain phyla within the clade. Some lophotrochozoan phyla are characterized by a larval stage called trochophore larvae, and other phyla are characterized by the presence of a feeding structure called a lophophore.

Part a shows cockroaches. Part b shows phoronids, whose body is a slender stalk anchored to the ocean floor. Fine tentacles radiate from the top of the stalk. The tentacles and stalk resemble a flower.

Animals that molt their exoskeletons, such as these (a) Madagascar hissing cockroaches, are in the clade Ecdysozoa. (b) Phoronids are in the clade Lophotrochozoa. The tentacles are part of a feeding structure called a lophophore. (credit a: modification of work by Whitney Cranshaw, Colorado State University, Bugwood.org; credit b: modification of work by NOAA)

Resource:

Explore an interactive tree of life here. Zoom and click to learn more about the organisms and their evolutionary relationships.

[Attributions and Licenses]


This is a lesson from the tutorial, Introduction to Animal Diversity and you are encouraged to log in or register, so that you can track your progress.

Log In

Share Thoughts