Biology » Gene Expression » Eukaryotic Translational and Post-translational Gene Regulation

Chemical Modifications, Protein Activity, and Longevity

Chemical Modifications, Protein Activity, and Longevity

Proteins can be chemically modified with the addition of groups including methyl, phosphate, acetyl, and ubiquitin groups. The addition or removal of these groups from proteins regulates their activity or the length of time they exist in the cell. Sometimes these modifications can regulate where a protein is found in the cell—for example, in the nucleus, the cytoplasm, or attached to the plasma membrane.

Chemical modifications occur in response to external stimuli such as stress, the lack of nutrients, heat, or ultraviolet light exposure. These changes can alter epigenetic accessibility, transcription, mRNA stability, or translation—all resulting in changes in expression of various genes. This is an efficient way for the cell to rapidly change the levels of specific proteins in response to the environment.

Because proteins are involved in every stage of gene regulation, the phosphorylation of a protein (depending on the protein that is modified) can alter accessibility to the chromosome, can alter translation (by altering transcription factor binding or function), can change nuclear shuttling (by influencing modifications to the nuclear pore complex), can alter RNA stability (by binding or not binding to the RNA to regulate its stability), can modify translation (increase or decrease), or can change post-translational modifications (add or remove phosphates or other chemical modifications).

The addition of an ubiquitin group to a protein marks that protein for degradation. Ubiquitin acts like a flag indicating that the protein lifespan is complete. These proteins are moved to the proteasome, an organelle that functions to remove proteins, to be degraded (see the figure below). One way to control gene expression, therefore, is to alter the longevity of the protein.

Multiple ubiquitin groups bind to a protein. The tagged protein is then fed into the hollow tube of a proteasome. The proteasome degrades the protein.

Proteins with ubiquitin tags are marked for degradation within the proteasome.

[Attributions and Licenses]


This is a lesson from the tutorial, Gene Expression and you are encouraged to log in or register, so that you can track your progress.

Log In

Share Thoughts