Mathematics » Functions II » The Tangent Function

Functions of the Form y = tan(θ + p)

Functions of the form \(y=\tan(\theta +p)\)

We now consider tangent functions of the form \(y = \tan(\theta + p)\) and the effects of parameter \(p\).

Optional Investigation: The effects of \(p\) on a tangent graph

  1. On the same system of axes, plot the following graphs for \(-\text{360}\text{°} \leq \theta \leq \text{360}\text{°}\):

    1. \(y_1 = \tan \theta\)
    2. \(y_2 = \tan (\theta – \text{60}\text{°})\)
    3. \(y_3 = \tan (\theta – \text{90}\text{°})\)
    4. \(y_4 = \tan (\theta + \text{60}\text{°})\)
    5. \(y_5 = \tan (\theta + \text{180}\text{°})\)
  2. Use your sketches of the functions above to complete the following table:

     \(y_1\)\(y_2\)\(y_3\)\(y_4\)\(y_5\)
    period     
    domain     
    range     
    \(y\)-intercept(s)     
    \(x\)-intercept(s)     
    asymptotes     
    effect of \(p\)     

The effect of the parameter on \(y = \tan(\theta + p)\)

The effect of \(p\) on the tangent function is a horizontal shift (or phase shift); the entire graph slides to the left or to the right.

  • For \(p > 0\), the graph of the tangent function shifts to the left by \(p\).

  • For \(p < 0\), the graph of the tangent function shifts to the right by \(p\).

\(p > 0\)\(p < 0\)
Functions of the Form <em>y = tan(θ + p)</em>Functions of the Form <em>y = tan(θ + p)</em>

Example

Question

  1. Sketch the following functions on the same set of axes for \(-\text{180}\text{°} \leq \theta \leq \text{180}\text{°}\).
    1. \(y_1 = \tan \theta\)
    2. \(y_2 = \tan (\theta + \text{30}\text{°})\)
  2. For each function determine the following:

    • Period
    • Domain and range
    • \(x\)- and \(y\)-intercepts
    • Asymptotes

Examine the equations of the form \(y = \tan (\theta + p)\)

Notice that for \(y_1 = \tan \theta\) we have \(p = \text{0}\text{°}\) (no phase shift) and for \(y_2 = \tan (\theta + \text{30}\text{°})\) we have \(p = \text{30}\text{°} > 0\) and therefore the graph shifts to the left by \(\text{30}\)\(\text{°}\).

Complete a table of values

θ\(-\text{180}\)\(\text{°}\)\(-\text{135}\)\(\text{°}\)\(-\text{90}\)\(\text{°}\)\(-\text{45}\)\(\text{°}\)\(\text{0}\)\(\text{°}\)\(\text{45}\)\(\text{°}\)\(\text{90}\)\(\text{°}\)\(\text{135}\)\(\text{°}\)\(\text{180}\)\(\text{°}\)
\(\tan \theta\)\(\text{0}\)\(\text{1}\)undef\(-\text{1}\)\(\text{0}\)\(\text{1}\)undef\(-\text{1}\)\(\text{0}\)
\(\tan (\theta + \text{30}\text{°})\)\(\text{0.58}\)\(\text{3.73}\)\(-\text{1.73}\)\(-\text{0.27}\)\(\text{0.58}\)\(\text{3.73}\)\(-\text{1.73}\)\(-\text{0.27}\)\(\text{0.58}\)

Sketch the tangent graphs

Functions of the Form <em>y = tan(θ + p)</em>

Complete the table

 \(y_1 = \tan \theta\)\(y_2 = \tan (\theta + \text{30}\text{°})\)
period\(\text{180}\text{°}\)\(\text{180}\text{°}\)
domain\(\{ \theta: -\text{180}\text{°} \leq \theta \leq \text{180}\text{°}, \theta \ne -\text{90}\text{°}; \text{90}\text{°} \}\)\(\{ \theta: -\text{180}\text{°} \leq \theta \leq \text{180}\text{°}, \theta \ne -\text{120}\text{°}; \text{60}\text{°} \}\)
range\((-\infty;\infty)\)\((-\infty;\infty)\)
\(y\)-intercept(s)\((\text{0}\text{°};0)\)\((\text{0}\text{°};\text{0.58})\)
\(x\)-intercept(s)\((-\text{180}\text{°};0)\), \((\text{0}\text{°};0)\) and \((\text{180}\text{°};0)\)\((-\text{30}\text{°};0) \text{ and } (\text{150}\text{°};0)\)
asymptotes\(\theta = -\text{90}\text{°} \text{ and } \theta = \text{90}\text{°}\)\(\theta = -\text{120}\text{°} \text{ and } \theta = \text{60}\text{°}\)

Discovering the characteristics

For functions of the general form: \(f(\theta) = y =\tan (\theta + p)\):

Domain and range

The domain of one branch is \(\{ \theta: \theta \in (-\text{90}\text{°} – p; \text{90}\text{°} – p) \}\) because the function is undefined for \(\theta = -\text{90}\text{°} – p\) and \(\theta = \text{90}\text{°} – p\).

The range is \(\{ f(\theta): f(\theta) \in \mathbb{R} \}\).

Intercepts

The \(x\)-intercepts are determined by letting \(f(\theta) = 0\) and solving for \(\theta\).

The \(y\)-intercept is calculated by letting \(\theta = \text{0}\text{°}\) and solving for \(f(\theta)\). \begin{align*} y &= \tan (\theta + p) \\ &= \tan (\text{0}\text{°} + p) \\ &= \tan p \end{align*} This gives the point \((\text{0}\text{°};\tan p)\).

Do you want to suggest a correction or an addition to this content? Leave Contribution

[Attributions and Licenses]


This is a lesson from the tutorial, Functions II and you are encouraged to log in or register, so that you can track your progress.

Log In

Share Thoughts


Do NOT follow this link or you will be banned from the site!