Mathematics » Functions II » The Cosine Function

Functions of the Form y = cos(θ + p)

Functions of the form \(y=\cos(\theta +p)\)

We now consider cosine functions of the form \(y = \cos(\theta + p)\) and the effects of parameter \(p\).

Optional Investigation: The effects of \(p\) on a cosine graph

  1. On the same system of axes, plot the following graphs for \(-\text{360}\text{°} \leq \theta \leq \text{360}\text{°}\):

    1. \(y_1 = \cos \theta\)
    2. \(y_2 = \cos (\theta – \text{90}\text{°})\)
    3. \(y_3 = \cos (\theta – \text{60}\text{°})\)
    4. \(y_4 = \cos (\theta + \text{90}\text{°})\)
    5. \(y_5 = \cos (\theta + \text{180}\text{°})\)
  2. Use your sketches of the functions above to complete the following table:

     \(y_1\)\(y_2\)\(y_3\)\(y_4\)\(y_5\)
    period     
    amplitude     
    domain     
    range     
    maximum turning points     
    minimum turning points     
    \(y\)-intercept(s)     
    \(x\)-intercept(s)     
    effect of \(p\)     

The effect of the parameter on \(y = \cos(\theta + p)\)

The effect of \(p\) on the cosine function is a horizontal shift (or phase shift); the entire graph slides to the left or to the right.

  • For \(p > 0\), the graph of the cosine function shifts to the left by \(p\) degrees.

  • For \(p < 0\), the graph of the cosine function shifts to the right by \(p\) degrees.

\(p>0\)

\(p<0\)

Functions of the Form <em>y = cos(θ + p)</em>Functions of the Form <em>y = cos(θ + p)</em>

Example

Question

  1. Sketch the following functions on the same set of axes for \(-\text{360}\text{°} \leq \theta \leq \text{360}\text{°}\).
    1. \(y_1 = \cos \theta\)
    2. \(y_2 = \cos (\theta + \text{30}\text{°})\)
  2. For each function determine the following:

    1. Period
    2. Amplitude
    3. Domain and range
    4. \(x\)- and \(y\)-intercepts
    5. Maximum and minimum turning points

Examine the equations of the form \(y = \cos (\theta + p)\)

Notice that for \(y_1 = \cos \theta\) we have \(p = 0\) (no phase shift) and for \(y_2 = \cos (\theta + \text{30}\text{°})\), \(p < 0\) therefore the graph shifts to the left by \(\text{30}\text{°}\).

Complete a table of values

θ\(-\text{360}\)\(\text{°}\)\(-\text{270}\)\(\text{°}\)\(-\text{180}\)\(\text{°}\)\(-\text{90}\)\(\text{°}\)\(\text{0}\)\(\text{°}\)\(\text{90}\)\(\text{°}\)\(\text{180}\)\(\text{°}\)\(\text{270}\)\(\text{°}\)\(\text{360}\)\(\text{°}\)
\(\cos \theta\)\(\text{1}\)\(\text{0}\)\(-\text{1}\)\(\text{0}\)\(\text{1}\)\(\text{0}\)\(-\text{1}\)\(\text{0}\)\(\text{1}\)
\(\cos(\theta + \text{30}\text{°})\)\(\text{0.87}\)\(-\text{0.5}\)\(-\text{0.87}\)\(\text{0.5}\)\(\text{0.87}\)\(-\text{0.5}\)\(-\text{0.87}\)\(\text{0.5}\)\(\text{0.87}\)

Sketch the cosine graphs

Functions of the Form <em>y = cos(θ + p)</em>

Complete the table

 \(y_1\)\(y_2\)
period\(\text{360}\text{°}\)\(\text{360}\text{°}\)
amplitude\(\text{1}\)\(\text{1}\)
domain\([-\text{360}\text{°};\text{360}\text{°}]\)\([-\text{360}\text{°};\text{360}\text{°}]\)
range\([-1;1]\)\([-1;1]\)
maximum turning points\((-\text{360}\text{°};1)\), \((\text{0}\text{°};1)\) and \((\text{360}\text{°};1)\)\((-\text{30}\text{°};1)\) and \((\text{330}\text{°};1)\)
minimum turning points\((-\text{180}\text{°};-1)\) and \((\text{180}\text{°};-1)\)\((-\text{210}\text{°};-1)\) and \((\text{150}\text{°};-1)\)
\(y\)-intercept(s)\((\text{0}\text{°};0)\)\((\text{0}\text{°};\text{0.87})\)
\(x\)-intercept(s)\((-\text{270}\text{°};0)\), \((-\text{90}\text{°};0)\), \((\text{90}\text{°};0)\) and \((\text{270}\text{°};0)\)\((-\text{300}\text{°};0)\), \((-\text{120}\text{°};0)\), \((\text{60}\text{°};0)\) and \((\text{240}\text{°};0)\)

Discovering the characteristics

For functions of the general form: \(f(\theta) = y =\cos (\theta + p)\):

Domain and range

The domain is \(\{ \theta: \theta \in \mathbb{R} \}\) because there is no value for \(\theta\) for which \(f(\theta)\) is undefined.

The range is \(\{ f(\theta): -1 \leq f(\theta) \leq 1, f(\theta) \in \mathbb{R} \}\).

Intercepts

The \(x\)-intercepts are determined by letting \(f(\theta) = 0\) and solving for \(\theta\).

The \(y\)-intercept is calculated by letting \(\theta = \text{0}\text{°}\) and solving for \(f(\theta)\). \begin{align*} y &= \cos (\theta + p) \\ &= \cos (\text{0}\text{°} + p) \\ &= \cos p \end{align*} This gives the point \((\text{0}\text{°};\cos p)\).

Do you want to suggest a correction or an addition to this content? Leave Contribution

[Attributions and Licenses]


This is a lesson from the tutorial, Functions II and you are encouraged to log in or register, so that you can track your progress.

Log In

Share Thoughts


Do NOT follow this link or you will be banned from the site!