Mathematics » Exponents and Surds » Rational Exponents And Surds

Simplest Surd Form

Simplest Surd Form

We can sometimes simplify surds by writing the radicand as a product of factors that can be further simplified using \(\sqrt[n]{ab} = \sqrt[n]{a} \times \sqrt[n]{b}\).

Example

Question

Write the following in simplest surd form: \(\sqrt{50}\)

Write the radicand as a product of prime factors

\begin{align*} \sqrt{50} &= \sqrt{5 \times 5 \times 2} \\ &= \sqrt{5^2 \times 2} \end{align*}

Simplify using \(\sqrt[n]{ab} = \sqrt[n]{a} \times \sqrt[n]{b}\)

\begin{align*} &= \sqrt{5^2} \times \sqrt{2} \\ &= 5 \times \sqrt{2} \\ &= 5\sqrt{2} \end{align*}

Sometimes a surd cannot be simplified. For example, \(\sqrt{6}, \sqrt[3]{30} \text{ and } \sqrt[4]{42}\) are already in their simplest form.

Example

Question

Write the following in simplest surd form: \(\sqrt[3]{54}\)

Write the radicand as a product of prime factors

\begin{align*} \sqrt[3]{54} &= \sqrt[3]{3 \times 3 \times 3 \times 2} \\ &= \sqrt[3]{3^3 \times 2} \end{align*}

Simplify using \(\sqrt[n]{ab} = \sqrt[n]{a} \times \sqrt[n]{b}\)

\begin{align*} &= \sqrt[3]{3^3} \times \sqrt[3]{2} \\ &= 3 \times \sqrt[3]{2} \\ &= 3\sqrt[3]{2} \end{align*}

Example

Question

Simplify: \(\sqrt{\text{147}}+\sqrt{\text{108}}\)

Write the radicands as a product of prime factors

\begin{align*} \sqrt{\text{147}} + \sqrt{\text{108}} &= \sqrt{49 \times 3} + \sqrt{36 \times 3} \\ &= \sqrt{7^2 \times 3} + \sqrt{6^2 \times 3} \end{align*}

Simplify using \(\sqrt[n]{ab} = \sqrt[n]{a} \times \sqrt[n]{b}\)

\begin{align*} &= ( \sqrt{7^2} \times \sqrt{3} ) + ( \sqrt{6^2} \times \sqrt{3} )\\ &= ( 7 \times \sqrt{3} ) + ( 6 \times \sqrt{3} ) \\ &= 7\sqrt{3} + 6\sqrt{3} \end{align*}

Simplify and write the final answer

\[13 \sqrt{3}\]

Example

Question

Simplify: \(( \sqrt{20} – \sqrt{5} )^2\)

Factorise the radicands were possible

\[( \sqrt{20} – \sqrt{5} )^2 = ( \sqrt{4 \times 5} – \sqrt{5} )^2\]

Simplify using \(\sqrt[n]{ab} = \sqrt[n]{a} \times \sqrt[n]{b}\)

\begin{align*} &= ( \sqrt{4} \times \sqrt{5} – \sqrt{5} )^2 \\ &= ( 2 \times \sqrt{5} – \sqrt{5} )^2 \\ &= ( 2\sqrt{5} – \sqrt{5} )^2 \end{align*}

Simplify and write the final answer

\begin{align*} &= ( \sqrt{5} )^2 \\ &= 5 \end{align*}

Example

Question

Write in simplest surd form: \(\sqrt{75} \times \sqrt[3]{(48)^{-1}}\)

Factorise the radicands were possible

\begin{align*} \sqrt{75} \times \sqrt[3]{(48)^{-1}} &= \sqrt{25 \times 3} \times \sqrt[3]{\cfrac{1}{48}} \\ &= \sqrt{25 \times 3} \times \cfrac{1}{\sqrt[3]{8 \times 6}} \end{align*}

Simplify using \(\sqrt[n]{ab} = \sqrt[n]{a} \times \sqrt[n]{b}\)

\begin{align*} &= \sqrt{25} \times \sqrt{3} \times \cfrac{1}{\sqrt[3]{8} \times \sqrt[3]{6}} \\ &= 5 \times \sqrt{3} \times \cfrac{1}{2 \times \sqrt[3]{6}} \end{align*}

Simplify and write the final answer

\begin{align*} &= 5\sqrt{3} \times \cfrac{1}{2\sqrt[3]{6}} \\ &= \cfrac{5\sqrt{3}}{2\sqrt[3]{6}} \end{align*}

Do you want to suggest a correction or an addition to this content? Leave Contribution

[Attributions and Licenses]


This is a lesson from the tutorial, Exponents and Surds and you are encouraged to log in or register, so that you can track your progress.

Log In

Share Thoughts


Do NOT follow this link or you will be banned from the site!