Biology » Evolution of Populations » Adaptive Evolution

Diversifying Selection

Diversifying Selection

Sometimes two or more distinct phenotypes can each have their advantages and be selected for by natural selection, while the intermediate phenotypes are, on average, less fit. Known as diversifying selection (see the figure below), this is seen in many populations of animals that have multiple male forms. Large, dominant alpha males obtain mates by brute force, while small males can sneak in for furtive copulations with the females in an alpha male’s territory. In this case, both the alpha males and the “sneaking” males will be selected for, but medium-sized males, which can’t overtake the alpha males and are too big to sneak copulations, are selected against.

Diversifying selection can also occur when environmental changes favor individuals on either end of the phenotypic spectrum. Imagine a population of mice living at the beach where there is light-colored sand interspersed with patches of tall grass. In this scenario, light-colored mice that blend in with the sand would be favored, as well as dark-colored mice that can hide in the grass. Medium-colored mice, on the other hand, would not blend in with either the grass or the sand, and would thus be more likely to be eaten by predators. The result of this type of selection is increased genetic variance as the population becomes more diverse.

Art Connection

 Part (a) shows a robin clutch size as an example of stabilizing selection. Robins typically lay four eggs. Larger clutches may result in malnourished chicks, while smaller clutches may result in no viable offspring. A wide bell curve indicates that, in the original population, there was a lot of variability in clutch size. Overlaying this wide bell curve is a narrow one that represents the clutch size after natural selection, which is much less variable. Part (b) shows moth color as an example of directional selection. Light-colored pepper moths are better camouflaged against a pristine environment, while dark-colored peppered moths are better camouflaged against a sooty environment. Thus, as the Industrial Revolution progressed in nineteenth-century England, the color of the moth population shifted from light to dark, an example of directional selection. A bell curve representing the original population and one representing the population after natural selection only slightly overlap. Part (c) shows rabbit coat color as an example of diversifying selection. In this hypothetical example, gray and Himalayan (gray and white) rabbits are better able to blend into their rocky environment than white ones. The original population is represented by a bell curve in which white is the most common coat color, while gray and Himalayan colors, on the right and left flank of the curve, are less common. After natural selection, the bell curve splits into two peaks, indicating gray and Himalayan coat color have become more common than the intermediate white coat color.

Different types of natural selection can impact the distribution of phenotypes within a population. In (a) stabilizing selection, an average phenotype is favored. In (b) directional selection, a change in the environment shifts the spectrum of phenotypes observed. In (c) diversifying selection, two or more extreme phenotypes are selected for, while the average phenotype is selected against.

In recent years, factories have become cleaner, and less soot is released into the environment. What impact do you think this has had on the distribution of moth color in the population?


Moths have shifted to a lighter color.

[Attributions and Licenses]

This is a lesson from the tutorial, Evolution of Populations and you are encouraged to log in or register, so that you can track your progress.

Log In

Share Thoughts