Role of Fluoride in Preventing Tooth Decay

Role of Fluoride in Preventing Tooth Decay

As we saw previously, fluoride ions help protect our teeth by reacting with hydroxylapatite to form fluorapatite, Ca5(PO4)3F. Since it lacks a hydroxide ion, fluorapatite is more resistant to attacks by acids in our mouths and is thus less soluble, protecting our teeth. Scientists discovered that naturally fluorinated water could be beneficial to your teeth, and so it became common practice to add fluoride to drinking water. Toothpastes and mouthwashes also contain amounts of fluoride (see the figure below).

Role of Fluoride in Preventing Tooth Decay

Fluoride, found in many toothpastes, helps prevent tooth decay (credit: Kerry Ceszyk).

Unfortunately, excess fluoride can negate its advantages. Natural sources of drinking water in various parts of the world have varying concentrations of fluoride, and places where that concentration is high are prone to certain health risks when there is no other source of drinking water. The most serious side effect of excess fluoride is the bone disease, skeletal fluorosis.

When excess fluoride is in the body, it can cause the joints to stiffen and the bones to thicken. It can severely impact mobility and can negatively affect the thyroid gland. Skeletal fluorosis is a condition that over 2.7 million people suffer from across the world. So while fluoride can protect our teeth from decay, the US Environmental Protection Agency sets a maximum level of 4 ppm (4 mg/L) of fluoride in drinking water in the US. Fluoride levels in water are not regulated in all countries, so fluorosis is a problem in areas with high levels of fluoride in the groundwater.

Do you want to suggest a correction or an addition to this content? Leave Contribution

[Attributions and Licenses]

Test Your Knowledge | Examination Past Questions

Which of the following ions is a pollutant in drinking water even in trace amounts?


A) Ca2+

B) Hg2+

C) Mg2+

D) Fe2+

Exam Body: Joint Admissions and Matriculation Board (JAMB)

View Past Question

This is a lesson from the tutorial, Equilibria of Other Reaction Classes and you are encouraged to log in or register, so that you can track your progress.

Log In

Do NOT follow this link or you will be banned from the site!