Biology » The Circulatory System » Blood Flow and Blood Pressure Regulation

Blood Pressure

Blood Pressure

The pressure of the blood flow in the body is produced by the hydrostatic pressure of the fluid (blood) against the walls of the blood vessels. Fluid will move from areas of high to low hydrostatic pressures. In the arteries, the hydrostatic pressure near the heart is very high and blood flows to the arterioles where the rate of flow is slowed by the narrow openings of the arterioles. During systole, when new blood is entering the arteries, the artery walls stretch to accommodate the increase of pressure of the extra blood; during diastole, the walls return to normal because of their elastic properties.

The blood pressure of the systole phase and the diastole phase, graphed in the figure below, gives the two pressure readings for blood pressure. For example, 120/80 indicates a reading of 120 mm Hg during the systole and 80 mm Hg during diastole. Throughout the cardiac cycle, the blood continues to empty into the arterioles at a relatively even rate. This resistance to blood flow is called peripheral resistance.

Graph A shows blood pressure, which starts high in the arteries and gradually drops as blood passes through the capillaries and veins. Blood velocity drops gradually in the arteries, then precipitously in the capillaries. Velocity increases as blood enters the veins. In the arteries, both blood pressure and velocity fluctuate to a higher level during diastole and a lower level during systole.

Blood pressure is related to the blood velocity in the arteries and arterioles. In the capillaries and veins, the blood pressure continues to decease but velocity increases.

Blood Pressure Regulation

Cardiac output is the volume of blood pumped by the heart in one minute. It is calculated by multiplying the number of heart contractions that occur per minute (heart rate) times the stroke volume (the volume of blood pumped into the aorta per contraction of the left ventricle). Therefore, cardiac output can be increased by increasing heart rate, as when exercising. However, cardiac output can also be increased by increasing stroke volume, such as if the heart contracts with greater strength.

Stroke volume can also be increased by speeding blood circulation through the body so that more blood enters the heart between contractions. During heavy exertion, the blood vessels relax and increase in diameter, offsetting the increased heart rate and ensuring adequate oxygenated blood gets to the muscles. Stress triggers a decrease in the diameter of the blood vessels, consequently increasing blood pressure. These changes can also be caused by nerve signals or hormones, and even standing up or lying down can have a great effect on blood pressure.

Continue With the Mobile App | Available on Google Play

[Attributions and Licenses]

This is a lesson from the tutorial, The Circulatory System and you are encouraged to log in or register, so that you can track your progress.

Log In

Share Thoughts