Given that cos x = \(\frac{12}{13}\), evaluate \(\frac{1 - \tan x}{\tan x}\)
Question
Given that cos x = \(\frac{12}{13}\), evaluate \(\frac{1 - \tan x}{\tan x}\)
Options
A) \(\frac{5}{13}\)
B) \(\frac{5}{7}\)
C) \(\frac{7}{5}\)
D) \(\frac{13}{5}\)
The correct answer is C.
Explanation:
cos x = \(\frac{12}{13}\)
132 = 122 + a2
169 = 144 + a2
a2 = 169 - 144
a2 = 25
a = \(\sqrt{25}\)
a = 5
tan x = \(\frac{5}{12}\)
\(\frac{1 - \tan x}{\tan x} = \frac{1 - \frac{5}{12}}{\frac{5}{12}}\)
\(\frac{\frac{1 - \frac{5}{12}}{12 - 5}}{12} = \frac{\frac{7}{12}}{\frac{5}{12}}\)
= \(\frac{7}{2} \div \frac{5}{12}\)
= \(\frac{7}{12} \times \frac{12}{5} = \frac{7}{5}\)
More Past Questions:
Dicussion (1)
Other Subjects
- English Language
- Biology
- Government
- Physics
- Chemistry
- Economics
- Christian Religious Knowledge
- Commerce
- Geography
- Literature In English
- Accounts
- Agricultural Science
- General Paper
- Islamic Religious Knowledge
- History
- Further Mathematics
- Current Affairs
- Civic Education
- Computer Studies
- Yoruba
- Hausa
- Igbo
- French
- Home Economics
- Sweet Sixteen
- Fine Arts
cos x = \(\frac{12}{13}\)
132 = 122 + a2
169 = 144 + a2
a2 = 169 - 144
a2 = 25
a = \(\sqrt{25}\)
a = 5
tan x = \(\frac{5}{12}\)
\(\frac{1 - \tan x}{\tan x} = \frac{1 - \frac{5}{12}}{\frac{5}{12}}\)
\(\frac{\frac{1 - \frac{5}{12}}{12 - 5}}{12} = \frac{\frac{7}{12}}{\frac{5}{12}}\)
= \(\frac{7}{2} \div \frac{5}{12}\)
= \(\frac{7}{12} \times \frac{12}{5} = \frac{7}{5}\)