Home » » $$\text{P} = \left[\cfrac{\mathrm{Q(R - T)}}{15}\right]^\frac{1}{3}$$Make T the ...

$$\text{P} = \left[\cfrac{\mathrm{Q(R - T)}}{15}\right]^\frac{1}{3}$$Make T the ...

Question

$$\text{P} = \left[\cfrac{\mathrm{Q(R - T)}}{15}\right]^\frac{1}{3}$$

Make T the subject of the relation.

Options

A) $$\text{T} = \frac{\text{R} + \text{P3}}{15\text{Q}}$$

B) $$\text{T} = \frac{\text{R} - 15\text{P}^3}{\text{Q}}$$

C) $$\text{T} = \text{R} - \frac{15\text{P}^3}{\text{Q}}$$

D) $$\text{T} = \frac{15\text{R} + \text{Q}}{\text{P}^3}$$

Explanation:

$$\text{P} = \left[ \cfrac{\mathrm{Q(R-T)}}{15} \right]^{\frac{1}{3}}$$
$$\text{P}^3 = \cfrac{\mathrm{Q(R-T)}}{15}$$
$$15\text{P}^3 = \mathrm{Q(R-T)}$$
$$\cfrac{15\text{P}^3}{\text{Q}} = \mathrm{R-T}$$
$$\text{T} = \text{R}-\cfrac{15\text{P}^3}{\text{Q}}$$

Dicussion (1)

• $$\text{P} = \left[ \cfrac{\mathrm{Q(R-T)}}{15} \right]^{\frac{1}{3}}$$
$$\text{P}^3 = \cfrac{\mathrm{Q(R-T)}}{15}$$
$$15\text{P}^3 = \mathrm{Q(R-T)}$$
$$\cfrac{15\text{P}^3}{\text{Q}} = \mathrm{R-T}$$
$$\text{T} = \text{R}-\cfrac{15\text{P}^3}{\text{Q}}$$