Home » Past Questions » Mathematics » Solve the inequality 1 - 2x < - \(\frac{1}{3}\).

Solve the inequality 1 - 2x < - \(\frac{1}{3}\).


Question

Solve the inequality 1 - 2x < - \(\frac{1}{3}\).

Options

A) x < \(\frac{2}{3}\)

B) x < -\(\frac{2}{3}\)

C) x > \(\frac{2}{3}\)

D) x > -\(\frac{2}{3}\)

The correct answer is C.

Explanation:

1 - 2x < - \(\frac{1}{3}\); -2x < -\(\frac{1}{3}\) - 1

-2x < - \(\frac{1- 3}{3}\)

-2x < - \(\frac{4}{-6}\)

3x -2x < -4; -8x < -4

x > -\(\frac{4}{-6}\) = x > \(\frac{2}{3}\)


More Past Questions:


Dicussion (1)

  • 1 - 2x < - \(\frac{1}{3}\); -2x < -\(\frac{1}{3}\) - 1

    -2x < - \(\frac{1- 3}{3}\)

    -2x < - \(\frac{4}{-6}\)

    3x -2x < -4; -8x < -4

    x > -\(\frac{4}{-6}\) = x > \(\frac{2}{3}\)

    Reply
    Like