Express \(\cfrac{3s - 1}{(s + 1)(s - 3)}\) as partial fractions
Question
Express \(\cfrac{3s - 1}{(s + 1)(s - 3)}\) as partial fractionsOptions
A) \(\frac{1}{(s+1)}+\frac{2}{(s-3)}\)
B) \(\frac{2}{(s+1)}-\frac{1}{(s-3)}\)
C) \(\frac{2}{(s+3)}+\frac{1}{(s-1)}\)
D) \(\frac{1}{(s-1)}+\frac{2}{(s-3)}\)
The correct answer is A.
Explanation:
3s-1\(s+1)(s-3)=A/(s+1)+B/(s-3)
3s-1\{s+1)(s-3)=A(s-3)+B(s+1)
3s-1/(s+1)(s-3)=A(s-3)+B(s+1)/(s+1)(s-3)
denominator cancels each other
3s-1=A(s-3)+B(s+1)
If s=+3
3(3)-1=A(3-3)+B(3+1)
[A(0)=0]
9-1=4B
8=4B
B=8/4
B=2✓
If s=-1
3s-1=A(s-3)+B(s+1)
3(-1)-1=A(-1-3)+B(-1+1)
-4=-4A
A=-4/-4
A=1✓
Therefore,1/(s+1)+2/(s-3) is the answer
3s-1\{s+1)(s-3)=A(s-3)+B(s+1)
3s-1/(s+1)(s-3)=A(s-3)+B(s+1)/(s+1)(s-3)
denominator cancels each other
3s-1=A(s-3)+B(s+1)
If s=+3
3(3)-1=A(3-3)+B(3+1)
[A(0)=0]
9-1=4B
8=4B
B=8/4
B=2✓
If s=-1
3s-1=A(s-3)+B(s+1)
3(-1)-1=A(-1-3)+B(-1+1)
-4=-4A
A=-4/-4
A=1✓
Therefore,1/(s+1)+2/(s-3) is the answer
Explanation provided by Franklin Precious
More Past Questions:
Discussion (2)
Other Subjects
- English Language
- Biology
- Government
- Physics
- Chemistry
- Economics
- Christian Religious Knowledge
- Commerce
- Geography
- Literature In English
- Accounts
- Agricultural Science
- General Paper
- Islamic Religious Knowledge
- History
- Further Mathematics
- Current Affairs
- Civic Education
- Computer Studies
- Yoruba
- Hausa
- Igbo
- French
- Home Economics
- Sweet Sixteen
- Fine Arts
Do trial and error...the one that gives you back the question is the answer
3s-1\(s+1)(s-3)=A/(s+1)+B/(s-3)
3s-1\{s+1)(s-3)=A(s-3)+B(s+1)
3s-1/(s+1)(s-3)=A(s-3)+B(s+1)/(s+1)(s-3)
denominator cancels each other
3s-1=A(s-3)+B(s+1)
If s=+3
3(3)-1=A(3-3)+B(3+1)
[A(0)=0]
9-1=4B
8=4B
B=8/4
B=2✓
If s=-1
3s-1=A(s-3)+B(s+1)
3(-1)-1=A(-1-3)+B(-1+1)
-4=-4A
A=-4/-4
A=1✓
Therefore,1/(s+1)+2/(s-3) is the answer