Integrate \(4x^{3} + \frac 1 x\) with respect to \(x\)
Question
Integrate \(4x^{3} + \frac 1 x\) with respect to \(x\)Options
A) \(\ln x\) + \(x^{4}\) + K
B) \(x^{-1}4\) + \(x^{4}\) + K
C) \(12x^{2}\) - \(x^{-2}\) + K
D) \(\frac 1 5x^{5}\) + \(x^{-2}\) + K
The correct answer is A.
Explanation:
\(f(x) = 4x^3 + \cfrac{1}{x}\)
\(\int \left( 4x^3 + \cfrac{1}{x} \right)dx = \cfrac{4x^{3+1}}{3+1} + \ln x + c\)
\(=\cfrac{4x^4}{4}+\ln x + c\)
\(=x^4+\ln x + C\)
\(\int \left( 4x^3 + \cfrac{1}{x} \right)dx = \cfrac{4x^{3+1}}{3+1} + \ln x + c\)
\(=\cfrac{4x^4}{4}+\ln x + c\)
\(=x^4+\ln x + C\)
More Past Questions:
Dicussion (1)
Other Subjects
- English Language
- Biology
- Government
- Physics
- Chemistry
- Economics
- Christian Religious Knowledge
- Commerce
- Geography
- Literature In English
- Accounts
- Agricultural Science
- General Paper
- Islamic Religious Knowledge
- History
- Further Mathematics
- Current Affairs
- Civic Education
- Computer Studies
- Yoruba
- Hausa
- Igbo
- French
- Home Economics
- Sweet Sixteen
- Fine Arts
\(f(x) = 4x^3 + \cfrac{1}{x}\)
\(\int \left( 4x^3 + \cfrac{1}{x} \right)dx = \cfrac{4x^{3+1}}{3+1} + \ln x + c\)
\(=\cfrac{4x^4}{4}+\ln x + c\)
\(=x^4+\ln x + C\)