Home » Past Questions » Mathematics » If x is a real number and x + 11 < 0, evaluate \(\frac{|x|}x\).

If x is a real number and x + 11 < 0, evaluate \(\frac{|x|}x\).


Question

If x is a real number and x + 11 < 0, evaluate \(\frac{|x|}x\).

Options

A) 0

B) -1

C) 1

D) 2

The correct answer is C.

Explanation:

x + 11 < 0
x < 0 - 11
x < -11
\(\frac{|x|}{x}=\frac{\pm x}{x} = \frac x x\) or \(\frac{-x} x\)
\(\frac{|x|}{x}=\frac x x\) or \(\frac{-x} x\)
1 or -1

More Past Questions:


Discussion (2)

  • Ayoola Peace

    option b
    because if we ignore the sign for the numerator, we don't ignore it for the denominator. hence the answer will be negative

  • x + 11 < 0
    x < 0 - 11
    x < -11
    \(\frac{|x|}{x}=\frac{\pm x}{x} = \frac x x\) or \(\frac{-x} x\)
    \(\frac{|x|}{x}=\frac x x\) or \(\frac{-x} x\)
    1 or -1

    Reply
    Like