Home » Past Questions » Mathematics » Find the remainder when \(x^{4} - 11x + 2\) is divided by x

Find the remainder when \(x^{4} - 11x + 2\) is divided by x


Question

Find the remainder when \(x^{4} - 11x + 2\) is divided by x

Options

A) 2

B) 6

C) -2

D) 5

The correct answer is A.

Explanation:

Let \(f(x) = x^{4} - 11x + 2\)
\(\begin{array}{rl}
x^3 - 11 \\
x | \overline{\phantom{00}x^{4} - 11x + 2} \\
\underline{(-)x^{4} - 0\phantom{00} + 0} \\
\phantom{000} -11x + 2 \\
\underline{\phantom{0}(-) -11x + 0} \\
2
\end{array}\)
Remainder = \(+2\)

More Past Questions:


Dicussion (1)

  • Let \(f(x) = x^{4} - 11x + 2\)
    \(\begin{array}{rl}
    x^3 - 11 \\
    x | \overline{\phantom{00}x^{4} - 11x + 2} \\
    \underline{(-)x^{4} - 0\phantom{00} + 0} \\
    \phantom{000} -11x + 2 \\
    \underline{\phantom{0}(-) -11x + 0} \\
    2
    \end{array}\)
    Remainder = \(+2\)

    Reply
    Like