Find the value of p which satisfies the equation \(\sqrt P-\frac 6 p = 1\)
Question
Find the value of p which satisfies the equation \(\sqrt P-\frac 6 p = 1\)Options
A) 4
B) -4
C) 9
D) -9
The correct answer is C.
Explanation:
\(\sqrt P-\frac 6{\sqrt p}=1\)
Multiply through by \(\sqrt P\)
\(P - 6 = \sqrt P\)
Square both side \((P - 6)^{2} = (\sqrt P)^{2}\)
\(P^{2} - 12P + 36 = P\)
\(P^{2} - 12P - P + 36 = 0\)
\(P = 9\) or \(4\)
Check to see if 9 or 4 satisfied the equation
\(\sqrt P-\frac 6{\sqrt P}=1\)
When \(P = 9\)
\(\sqrt 9-\frac 6{\sqrt P}=1\)
\(3-\frac 6 3=1\)
\(3 - 2 = 1\)
\(1 = 1\)
Hence the value p = 9 satisfied the equation when p = 4
\(\sqrt 4-\frac 6{\sqrt 4}=1\)
\(2-\frac 6 2=1\)
\(2 - 3 = 1\)
\(-1 \neq 1\)
Hence the value p = 4 does not satisfy the equation \({\therefore} p = 9\)
Multiply through by \(\sqrt P\)
\(P - 6 = \sqrt P\)
Square both side \((P - 6)^{2} = (\sqrt P)^{2}\)
\(P^{2} - 12P + 36 = P\)
\(P^{2} - 12P - P + 36 = 0\)
\(P = 9\) or \(4\)
Check to see if 9 or 4 satisfied the equation
\(\sqrt P-\frac 6{\sqrt P}=1\)
When \(P = 9\)
\(\sqrt 9-\frac 6{\sqrt P}=1\)
\(3-\frac 6 3=1\)
\(3 - 2 = 1\)
\(1 = 1\)
Hence the value p = 9 satisfied the equation when p = 4
\(\sqrt 4-\frac 6{\sqrt 4}=1\)
\(2-\frac 6 2=1\)
\(2 - 3 = 1\)
\(-1 \neq 1\)
Hence the value p = 4 does not satisfy the equation \({\therefore} p = 9\)
More Past Questions:
Dicussion (1)
Other Subjects
- English Language
- Biology
- Government
- Physics
- Chemistry
- Economics
- Christian Religious Knowledge
- Commerce
- Geography
- Literature In English
- Accounts
- Agricultural Science
- General Paper
- Islamic Religious Knowledge
- History
- Further Mathematics
- Current Affairs
- Civic Education
- Computer Studies
- Yoruba
- Hausa
- Igbo
- French
- Home Economics
- Sweet Sixteen
- Fine Arts
\(\sqrt P-\frac 6{\sqrt p}=1\)
Multiply through by \(\sqrt P\)
\(P - 6 = \sqrt P\)
Square both side \((P - 6)^{2} = (\sqrt P)^{2}\)
\(P^{2} - 12P + 36 = P\)
\(P^{2} - 12P - P + 36 = 0\)
\(P = 9\) or \(4\)
Check to see if 9 or 4 satisfied the equation
\(\sqrt P-\frac 6{\sqrt P}=1\)
When \(P = 9\)
\(\sqrt 9-\frac 6{\sqrt P}=1\)
\(3-\frac 6 3=1\)
\(3 - 2 = 1\)
\(1 = 1\)
Hence the value p = 9 satisfied the equation when p = 4
\(\sqrt 4-\frac 6{\sqrt 4}=1\)
\(2-\frac 6 2=1\)
\(2 - 3 = 1\)
\(-1 \neq 1\)
Hence the value p = 4 does not satisfy the equation \({\therefore} p = 9\)