Resolve \(\frac 1{(1-x^2)}\) into partial fractions
Question
Resolve \(\frac 1{(1-x^2)}\) into partial fractionsOptions
A) \(\frac 1{2(1+x)}-\frac 1{2(1-x)}\)
B) \(\frac 1{2(1+x)}+\frac 1{2(x-1)}\)
C) \(\frac 1{2(x+1)}+\frac 1{2(1-x)}\)
D) \(\frac 1{2(1-x^2)}\)
The correct answer is C.
Explanation:
\(\frac 1{1-x^2}\)
But \(1 - x^2=(1 - x)(1+x)\)
\(\frac 1{1-x^2}=\frac 1{(1-x)(1+x)}\)
A linear factor of the form ax + b always gives a partial fraction of \(\frac A{\mathit{ax + b}}\)
\(\frac 1{(1-x)(1+x)}=\frac A{1-x}+\frac B{1+x}\)
\(\frac 1{(1-x)(1+x)}\)
=\(\frac{A\left(1+x\right)+B(1-x)}{(1-x)(1+x)}\)
\(1 = A(1 + x) + \textit{B}(1 - x)\)
Let \(x = 1\)
\(1 = \textit{A(}1 + 1) + \textit{B}(1 - 1)\)
\(1 = 2\textit{A} + \textit{B}(0)\)
\(1 = 2A\)
\(A = \frac{1}{2}\)
Let \(x = -1\)
\(1 = A(-1 + 1) + \textit{B}[1 - (-1)]\)
\(1 = A(0) + \textit{B}(1 + 1)\)
\(B = \frac{1}{2}\)
\(\frac 1{(1-x)(1+x)}=\frac A{1-x}+\frac B{1+x}\)
\(= \frac{\frac 1 2}{1-x}+\frac{\frac 1 2}{1+x}\)
\(\frac 1{2(1-x)}+\frac 1{2(1+x)}\)
\(= \frac 1{(1-x)(1+x)}=\frac 1{1-x^2}=\frac 1{2(1-x)}+\frac 1{2(1+x)}\)
But \(1 - x^2=(1 - x)(1+x)\)
\(\frac 1{1-x^2}=\frac 1{(1-x)(1+x)}\)
A linear factor of the form ax + b always gives a partial fraction of \(\frac A{\mathit{ax + b}}\)
\(\frac 1{(1-x)(1+x)}=\frac A{1-x}+\frac B{1+x}\)
\(\frac 1{(1-x)(1+x)}\)
=\(\frac{A\left(1+x\right)+B(1-x)}{(1-x)(1+x)}\)
\(1 = A(1 + x) + \textit{B}(1 - x)\)
Let \(x = 1\)
\(1 = \textit{A(}1 + 1) + \textit{B}(1 - 1)\)
\(1 = 2\textit{A} + \textit{B}(0)\)
\(1 = 2A\)
\(A = \frac{1}{2}\)
Let \(x = -1\)
\(1 = A(-1 + 1) + \textit{B}[1 - (-1)]\)
\(1 = A(0) + \textit{B}(1 + 1)\)
\(B = \frac{1}{2}\)
\(\frac 1{(1-x)(1+x)}=\frac A{1-x}+\frac B{1+x}\)
\(= \frac{\frac 1 2}{1-x}+\frac{\frac 1 2}{1+x}\)
\(\frac 1{2(1-x)}+\frac 1{2(1+x)}\)
\(= \frac 1{(1-x)(1+x)}=\frac 1{1-x^2}=\frac 1{2(1-x)}+\frac 1{2(1+x)}\)
More Past Questions:
Discussion (2)
Other Subjects
- English Language
- Biology
- Government
- Physics
- Chemistry
- Economics
- Christian Religious Knowledge
- Commerce
- Geography
- Literature In English
- Accounts
- Agricultural Science
- General Paper
- Islamic Religious Knowledge
- History
- Further Mathematics
- Current Affairs
- Civic Education
- Computer Studies
- Yoruba
- Hausa
- Igbo
- French
- Home Economics
- Sweet Sixteen
- Fine Arts
B is the correct option not C
You show the workings of B
\(\frac 1{1-x^2}\)
But \(1 - x^2=(1 - x)(1+x)\)
\(\frac 1{1-x^2}=\frac 1{(1-x)(1+x)}\)
A linear factor of the form ax + b always gives a partial fraction of \(\frac A{\mathit{ax + b}}\)
\(\frac 1{(1-x)(1+x)}=\frac A{1-x}+\frac B{1+x}\)
\(\frac 1{(1-x)(1+x)}\)
=\(\frac{A\left(1+x\right)+B(1-x)}{(1-x)(1+x)}\)
\(1 = A(1 + x) + \textit{B}(1 - x)\)
Let \(x = 1\)
\(1 = \textit{A(}1 + 1) + \textit{B}(1 - 1)\)
\(1 = 2\textit{A} + \textit{B}(0)\)
\(1 = 2A\)
\(A = \frac{1}{2}\)
Let \(x = -1\)
\(1 = A(-1 + 1) + \textit{B}[1 - (-1)]\)
\(1 = A(0) + \textit{B}(1 + 1)\)
\(B = \frac{1}{2}\)
\(\frac 1{(1-x)(1+x)}=\frac A{1-x}+\frac B{1+x}\)
\(= \frac{\frac 1 2}{1-x}+\frac{\frac 1 2}{1+x}\)
\(\frac 1{2(1-x)}+\frac 1{2(1+x)}\)
\(= \frac 1{(1-x)(1+x)}=\frac 1{1-x^2}=\frac 1{2(1-x)}+\frac 1{2(1+x)}\)