Home » Past Questions » Mathematics » Find T in terms of K, Q and S if S = 2r(\(\pi\)QT + K)

Find T in terms of K, Q and S if S = 2r(\(\pi\)QT + K)


Question

Find T in terms of K, Q and S if S = 2r(\(\pi\)QT + K)

Options

A) \(\frac{S^2}{2 \pi r^2Q} - \frac{k}{Q}\)

B) \(\frac{S^2}{2 \pi r^2Q}\) - k

C) \(\frac{S^2}{4 \pi r^2Q} - \frac{k}{Q}\)

D) \(\frac{s^2}{4 \pi r^2Q}\)

The correct answer is B.

Explanation:

\(\frac{s^2}{4r^2}\) = QT\(\pi\) + KT
\(\frac{s^2}{4r^2}\) - k\(\pi\) = QT\(\pi\)

T = \(\frac{s^2}{4Q\pi r^2}\) - k


More Past Questions:


Dicussion (1)