Home » Past Questions » Mathematics » Find the value of k if \(\frac{k}{\sqrt{3} + \sqrt{2}}\) = k\(\sqrt{3 - 2}\)

Find the value of k if \(\frac{k}{\sqrt{3} + \sqrt{2}}\) = k\(\sqrt{3 - 2}\)


Question

Find the value of k if \(\frac{k}{\sqrt{3} + \sqrt{2}}\) = k\(\sqrt{3 - 2}\)

Options

A) 3

B) 2

C) \(\sqrt{3}\)

D) \(\sqrt 2\)

The correct answer is D.

Explanation:

\(\frac{k}{\sqrt{3} + \sqrt{2}}\) = k\(\sqrt{3 - 2}\)
\(\frac{k}{\sqrt{3} + \sqrt{2}}\) x \(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}\)
= k\(\sqrt{3 - 2}\)
= k(\(\sqrt{3} - \sqrt{2}\))
= k\(\sqrt{3 - 2}\)
= k\(\sqrt{3}\) - k\(\sqrt{2}\)
= k\(\sqrt{3 - 2}\)
k2 = \(\sqrt{2}\)
k = \(\frac{2}{\sqrt{2}}\)
= \(\sqrt{2}\)

More Past Questions:


Dicussion (1)

  • \(\frac{k}{\sqrt{3} + \sqrt{2}}\) = k\(\sqrt{3 - 2}\)
    \(\frac{k}{\sqrt{3} + \sqrt{2}}\) x \(\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}\)
    = k\(\sqrt{3 - 2}\)
    = k(\(\sqrt{3} - \sqrt{2}\))
    = k\(\sqrt{3 - 2}\)
    = k\(\sqrt{3}\) - k\(\sqrt{2}\)
    = k\(\sqrt{3 - 2}\)
    k2 = \(\sqrt{2}\)
    k = \(\frac{2}{\sqrt{2}}\)
    = \(\sqrt{2}\)

    Reply
    Like