Given that log4(y - 1) + log4(\(\frac{1}{2}\)x) = 1 and log2(y + 1) + log2x = 2,...
Question
Given that log4(y - 1) + log4(\(\frac{1}{2}\)x) = 1 and log2(y + 1) + log2x = 2, solve for x and y respectively
Options
A) 2, 3
B) 3, 2
C) -2, -3
D) -3, -2
The correct answer is C.
Explanation:
log4(y - 1) + log4(\(\frac{1}{2}\)x) = 1
log4(y - 1)(\(\frac{1}{2}\)x) \(\to\) (y - 1)(\(\frac{1}{2}\)x) = 4 ........(1)
log2(y + 1) + log2x = 2
log2(y + 1)x = 2 \(\to\) (y + 1)x = 22 = 4.....(ii)
From equation (ii) x = \(\frac{4}{y + 1}\)........(iii)
put equation (iii) in (i) = y (y - 1)[\(\frac{1}{2}(\frac{4}{y - 1}\))] = 4
= 2y - 2
= 4y + 4
2y = -6
y = -3
x = \(\frac{4}{-3 + 1}\)
= \(\frac{4}{-2}\)
X = 2
therefore x = -2, y = -3
log4(y - 1)(\(\frac{1}{2}\)x) \(\to\) (y - 1)(\(\frac{1}{2}\)x) = 4 ........(1)
log2(y + 1) + log2x = 2
log2(y + 1)x = 2 \(\to\) (y + 1)x = 22 = 4.....(ii)
From equation (ii) x = \(\frac{4}{y + 1}\)........(iii)
put equation (iii) in (i) = y (y - 1)[\(\frac{1}{2}(\frac{4}{y - 1}\))] = 4
= 2y - 2
= 4y + 4
2y = -6
y = -3
x = \(\frac{4}{-3 + 1}\)
= \(\frac{4}{-2}\)
X = 2
therefore x = -2, y = -3
More Past Questions:
Dicussion (1)
Other Subjects
- English Language
- Biology
- Government
- Physics
- Chemistry
- Economics
- Christian Religious Knowledge
- Commerce
- Geography
- Literature In English
- Accounts
- Agricultural Science
- General Paper
- Islamic Religious Knowledge
- History
- Further Mathematics
- Current Affairs
- Civic Education
- Computer Studies
- Yoruba
- Hausa
- Igbo
- French
- Home Economics
- Sweet Sixteen
- Fine Arts
log4(y - 1) + log4(\(\frac{1}{2}\)x) = 1
log4(y - 1)(\(\frac{1}{2}\)x) \(\to\) (y - 1)(\(\frac{1}{2}\)x) = 4 ........(1)
log2(y + 1) + log2x = 2
log2(y + 1)x = 2 \(\to\) (y + 1)x = 22 = 4.....(ii)
From equation (ii) x = \(\frac{4}{y + 1}\)........(iii)
put equation (iii) in (i) = y (y - 1)[\(\frac{1}{2}(\frac{4}{y - 1}\))] = 4
= 2y - 2
= 4y + 4
2y = -6
y = -3
x = \(\frac{4}{-3 + 1}\)
= \(\frac{4}{-2}\)
X = 2
therefore x = -2, y = -3