Exponents
Operators
Brackets
Arrows
Relational
Sets
Greek
Advanced
\( a^{b}\)
\( a_{b}^{c}\)
\({a_{b}}^{c}\)
\(a_{b}\)
\(\sqrt{a}\)
\(\sqrt[b]{a}\)
\(\frac{a}{b}\)
\(\cfrac{a}{b}\)
\(+\)
\(-\)
\(\times\)
\(\div\)
\(\pm\)
\(\cdot\)
\(\amalg\)
\(\ast\)
\(\barwedge\)
\(\bigcirc\)
\(\bigodot\)
\(\bigoplus\)
\(\bigotimes\)
\(\bigsqcup\)
\(\bigstar\)
\(\bigtriangledown\)
\(\bigtriangleup\)
\(\blacklozenge\)
\(\blacksquare\)
\(\blacktriangle\)
\(\blacktriangledown\)
\(\bullet\)
\(\cap\)
\(\cup\)
\(\circ\)
\(\circledcirc\)
\(\dagger\)
\(\ddagger\)
\(\diamond\)
\(\dotplus\)
\(\lozenge\)
\(\mp\)
\(\ominus\)
\(\oplus\)
\(\oslash\)
\(\otimes\)
\(\setminus\)
\(\sqcap\)
\(\sqcup\)
\(\square\)
\(\star\)
\(\triangle\)
\(\triangledown\)
\(\triangleleft\)
\(\Cap\)
\(\Cup\)
\(\uplus\)
\(\vee\)
\(\veebar\)
\(\wedge\)
\(\wr\)
\(\therefore\)
\(\left ( a \right )\)
\(\left \| a \right \|\)
\(\left [ a \right ]\)
\(\left \{ a \right \}\)
\(\left \lceil a \right \rceil\)
\(\left \lfloor a \right \rfloor\)
\(\left ( a \right )\)
\(\vert a \vert\)
\(\leftarrow\)
\(\leftharpoondown\)
\(\leftharpoonup\)
\(\leftrightarrow\)
\(\leftrightharpoons\)
\(\mapsto\)
\(\rightarrow\)
\(\rightharpoondown\)
\(\rightharpoonup\)
\(\rightleftharpoons\)
\(\to\)
\(\Leftarrow\)
\(\Leftrightarrow\)
\(\Rightarrow\)
\(\overset{a}{\leftarrow}\)
\(\overset{a}{\rightarrow}\)
\(\approx \)
\(\asymp \)
\(\cong \)
\(\dashv \)
\(\doteq \)
\(= \)
\(\equiv \)
\(\frown \)
\(\geq \)
\(\geqslant \)
\(\gg \)
\(\gt \)
\(| \)
\(\leq \)
\(\leqslant \)
\(\ll \)
\(\lt \)
\(\models \)
\(\neq \)
\(\ngeqslant \)
\(\ngtr \)
\(\nleqslant \)
\(\nless \)
\(\not\equiv \)
\(\overset{\underset{\mathrm{def}}{}}{=} \)
\(\parallel \)
\(\perp \)
\(\prec \)
\(\preceq \)
\(\sim \)
\(\simeq \)
\(\smile \)
\(\succ \)
\(\succeq \)
\(\vdash\)
\(\in \)
\(\ni \)
\(\notin \)
\(\nsubseteq \)
\(\nsupseteq \)
\(\sqsubset \)
\(\sqsubseteq \)
\(\sqsupset \)
\(\sqsupseteq \)
\(\subset \)
\(\subseteq \)
\(\subseteqq \)
\(\supset \)
\(\supseteq \)
\(\supseteqq \)
\(\emptyset\)
\(\mathbb{N}\)
\(\mathbb{Z}\)
\(\mathbb{Q}\)
\(\mathbb{R}\)
\(\mathbb{C}\)
\(\alpha\)
\(\beta\)
\(\gamma\)
\(\delta\)
\(\epsilon\)
\(\zeta\)
\(\eta\)
\(\theta\)
\(\iota\)
\(\kappa\)
\(\lambda\)
\(\mu\)
\(\nu\)
\(\xi\)
\(\pi\)
\(\rho\)
\(\sigma\)
\(\tau\)
\(\upsilon\)
\(\phi\)
\(\chi\)
\(\psi\)
\(\omega\)
\(\Gamma\)
\(\Delta\)
\(\Theta\)
\(\Lambda\)
\(\Xi\)
\(\Pi\)
\(\Sigma\)
\(\Upsilon\)
\(\Phi\)
\(\Psi\)
\(\Omega\)
\((a)\)
\([a]\)
\(\lbrace{a}\rbrace\)
\(\frac{a+b}{c+d}\)
\(\vec{a}\)
\(\binom {a} {b}\)
\({a \brack b}\)
\({a \brace b}\)
\(\sin\)
\(\cos\)
\(\tan\)
\(\cot\)
\(\sec\)
\(\csc\)
\(\sinh\)
\(\cosh\)
\(\tanh\)
\(\coth\)
\(\bigcap {a}\)
\(\bigcap_{b}^{} a\)
\(\bigcup {a}\)
\(\bigcup_{b}^{} a\)
\(\coprod {a}\)
\(\coprod_{b}^{} a\)
\(\prod {a}\)
\(\prod_{b}^{} a\)
\(\sum_{a=1}^b\)
\(\sum_{b}^{} a\)
\(\sum {a}\)
\(\underset{a \to b}\lim\)
\(\int {a}\)
\(\int_{b}^{} a\)
\(\iint {a}\)
\(\iint_{b}^{} a\)
\(\int_{a}^{b}{c}\)
\(\iint_{a}^{b}{c}\)
\(\iiint_{a}^{b}{c}\)
\(\oint{a}\)
\(\oint_{b}^{} a\)
Option A is correct answer which is activation energy.
Activation Energy
Option A
Activation energy (A):The minimum amount of energy required for a chemical reaction to occur
ACTIVATION ENERGY
ACTIVATION ENERGY
(A) activation Energy
Activation energy is the minimum energy that must be overcome before reactant form a product.if you want to prepare amala you need to put water in a pot on fire and you put small cassava flour the water will boil faster because impurites increase the boiling and widening the boiling range from maybe 99°c to 105° so when the water reach 99°c instead of 100°c it start boiling.so impurites lower activation energy
Activation energy
Activation energy
Activation energy
Activation energy
Activation energy
Activation energy
activation energy
activation energy