Exponents
Operators
Brackets
Arrows
Relational
Sets
Greek
Advanced
\( a^{b}\)
\( a_{b}^{c}\)
\({a_{b}}^{c}\)
\(a_{b}\)
\(\sqrt{a}\)
\(\sqrt[b]{a}\)
\(\frac{a}{b}\)
\(\cfrac{a}{b}\)
\(+\)
\(-\)
\(\times\)
\(\div\)
\(\pm\)
\(\cdot\)
\(\amalg\)
\(\ast\)
\(\barwedge\)
\(\bigcirc\)
\(\bigodot\)
\(\bigoplus\)
\(\bigotimes\)
\(\bigsqcup\)
\(\bigstar\)
\(\bigtriangledown\)
\(\bigtriangleup\)
\(\blacklozenge\)
\(\blacksquare\)
\(\blacktriangle\)
\(\blacktriangledown\)
\(\bullet\)
\(\cap\)
\(\cup\)
\(\circ\)
\(\circledcirc\)
\(\dagger\)
\(\ddagger\)
\(\diamond\)
\(\dotplus\)
\(\lozenge\)
\(\mp\)
\(\ominus\)
\(\oplus\)
\(\oslash\)
\(\otimes\)
\(\setminus\)
\(\sqcap\)
\(\sqcup\)
\(\square\)
\(\star\)
\(\triangle\)
\(\triangledown\)
\(\triangleleft\)
\(\Cap\)
\(\Cup\)
\(\uplus\)
\(\vee\)
\(\veebar\)
\(\wedge\)
\(\wr\)
\(\therefore\)
\(\left ( a \right )\)
\(\left \| a \right \|\)
\(\left [ a \right ]\)
\(\left \{ a \right \}\)
\(\left \lceil a \right \rceil\)
\(\left \lfloor a \right \rfloor\)
\(\left ( a \right )\)
\(\vert a \vert\)
\(\leftarrow\)
\(\leftharpoondown\)
\(\leftharpoonup\)
\(\leftrightarrow\)
\(\leftrightharpoons\)
\(\mapsto\)
\(\rightarrow\)
\(\rightharpoondown\)
\(\rightharpoonup\)
\(\rightleftharpoons\)
\(\to\)
\(\Leftarrow\)
\(\Leftrightarrow\)
\(\Rightarrow\)
\(\overset{a}{\leftarrow}\)
\(\overset{a}{\rightarrow}\)
\(\approx \)
\(\asymp \)
\(\cong \)
\(\dashv \)
\(\doteq \)
\(= \)
\(\equiv \)
\(\frown \)
\(\geq \)
\(\geqslant \)
\(\gg \)
\(\gt \)
\(| \)
\(\leq \)
\(\leqslant \)
\(\ll \)
\(\lt \)
\(\models \)
\(\neq \)
\(\ngeqslant \)
\(\ngtr \)
\(\nleqslant \)
\(\nless \)
\(\not\equiv \)
\(\overset{\underset{\mathrm{def}}{}}{=} \)
\(\parallel \)
\(\perp \)
\(\prec \)
\(\preceq \)
\(\sim \)
\(\simeq \)
\(\smile \)
\(\succ \)
\(\succeq \)
\(\vdash\)
\(\in \)
\(\ni \)
\(\notin \)
\(\nsubseteq \)
\(\nsupseteq \)
\(\sqsubset \)
\(\sqsubseteq \)
\(\sqsupset \)
\(\sqsupseteq \)
\(\subset \)
\(\subseteq \)
\(\subseteqq \)
\(\supset \)
\(\supseteq \)
\(\supseteqq \)
\(\emptyset\)
\(\mathbb{N}\)
\(\mathbb{Z}\)
\(\mathbb{Q}\)
\(\mathbb{R}\)
\(\mathbb{C}\)
\(\alpha\)
\(\beta\)
\(\gamma\)
\(\delta\)
\(\epsilon\)
\(\zeta\)
\(\eta\)
\(\theta\)
\(\iota\)
\(\kappa\)
\(\lambda\)
\(\mu\)
\(\nu\)
\(\xi\)
\(\pi\)
\(\rho\)
\(\sigma\)
\(\tau\)
\(\upsilon\)
\(\phi\)
\(\chi\)
\(\psi\)
\(\omega\)
\(\Gamma\)
\(\Delta\)
\(\Theta\)
\(\Lambda\)
\(\Xi\)
\(\Pi\)
\(\Sigma\)
\(\Upsilon\)
\(\Phi\)
\(\Psi\)
\(\Omega\)
\((a)\)
\([a]\)
\(\lbrace{a}\rbrace\)
\(\frac{a+b}{c+d}\)
\(\vec{a}\)
\(\binom {a} {b}\)
\({a \brack b}\)
\({a \brace b}\)
\(\sin\)
\(\cos\)
\(\tan\)
\(\cot\)
\(\sec\)
\(\csc\)
\(\sinh\)
\(\cosh\)
\(\tanh\)
\(\coth\)
\(\bigcap {a}\)
\(\bigcap_{b}^{} a\)
\(\bigcup {a}\)
\(\bigcup_{b}^{} a\)
\(\coprod {a}\)
\(\coprod_{b}^{} a\)
\(\prod {a}\)
\(\prod_{b}^{} a\)
\(\sum_{a=1}^b\)
\(\sum_{b}^{} a\)
\(\sum {a}\)
\(\underset{a \to b}\lim\)
\(\int {a}\)
\(\int_{b}^{} a\)
\(\iint {a}\)
\(\iint_{b}^{} a\)
\(\int_{a}^{b}{c}\)
\(\iint_{a}^{b}{c}\)
\(\iiint_{a}^{b}{c}\)
\(\oint{a}\)
\(\oint_{b}^{} a\)
The ans should b A cos half life is used yo create a new element after disintegration.
The question say element not object ( polymerization of elements)
The answer is nt B, the correct answer is C. Because we use half life to knw how long a radioactive element lasts
Scientists can use the half-life of carbon-14 for instance to determine the approximate age of organic objects.
I think the answer was a