Exponents
Operators
Brackets
Arrows
Relational
Sets
Greek
Advanced
\( a^{b}\)
\( a_{b}^{c}\)
\({a_{b}}^{c}\)
\(a_{b}\)
\(\sqrt{a}\)
\(\sqrt[b]{a}\)
\(\frac{a}{b}\)
\(\cfrac{a}{b}\)
\(+\)
\(-\)
\(\times\)
\(\div\)
\(\pm\)
\(\cdot\)
\(\amalg\)
\(\ast\)
\(\barwedge\)
\(\bigcirc\)
\(\bigodot\)
\(\bigoplus\)
\(\bigotimes\)
\(\bigsqcup\)
\(\bigstar\)
\(\bigtriangledown\)
\(\bigtriangleup\)
\(\blacklozenge\)
\(\blacksquare\)
\(\blacktriangle\)
\(\blacktriangledown\)
\(\bullet\)
\(\cap\)
\(\cup\)
\(\circ\)
\(\circledcirc\)
\(\dagger\)
\(\ddagger\)
\(\diamond\)
\(\dotplus\)
\(\lozenge\)
\(\mp\)
\(\ominus\)
\(\oplus\)
\(\oslash\)
\(\otimes\)
\(\setminus\)
\(\sqcap\)
\(\sqcup\)
\(\square\)
\(\star\)
\(\triangle\)
\(\triangledown\)
\(\triangleleft\)
\(\Cap\)
\(\Cup\)
\(\uplus\)
\(\vee\)
\(\veebar\)
\(\wedge\)
\(\wr\)
\(\therefore\)
\(\left ( a \right )\)
\(\left \| a \right \|\)
\(\left [ a \right ]\)
\(\left \{ a \right \}\)
\(\left \lceil a \right \rceil\)
\(\left \lfloor a \right \rfloor\)
\(\left ( a \right )\)
\(\vert a \vert\)
\(\leftarrow\)
\(\leftharpoondown\)
\(\leftharpoonup\)
\(\leftrightarrow\)
\(\leftrightharpoons\)
\(\mapsto\)
\(\rightarrow\)
\(\rightharpoondown\)
\(\rightharpoonup\)
\(\rightleftharpoons\)
\(\to\)
\(\Leftarrow\)
\(\Leftrightarrow\)
\(\Rightarrow\)
\(\overset{a}{\leftarrow}\)
\(\overset{a}{\rightarrow}\)
\(\approx \)
\(\asymp \)
\(\cong \)
\(\dashv \)
\(\doteq \)
\(= \)
\(\equiv \)
\(\frown \)
\(\geq \)
\(\geqslant \)
\(\gg \)
\(\gt \)
\(| \)
\(\leq \)
\(\leqslant \)
\(\ll \)
\(\lt \)
\(\models \)
\(\neq \)
\(\ngeqslant \)
\(\ngtr \)
\(\nleqslant \)
\(\nless \)
\(\not\equiv \)
\(\overset{\underset{\mathrm{def}}{}}{=} \)
\(\parallel \)
\(\perp \)
\(\prec \)
\(\preceq \)
\(\sim \)
\(\simeq \)
\(\smile \)
\(\succ \)
\(\succeq \)
\(\vdash\)
\(\in \)
\(\ni \)
\(\notin \)
\(\nsubseteq \)
\(\nsupseteq \)
\(\sqsubset \)
\(\sqsubseteq \)
\(\sqsupset \)
\(\sqsupseteq \)
\(\subset \)
\(\subseteq \)
\(\subseteqq \)
\(\supset \)
\(\supseteq \)
\(\supseteqq \)
\(\emptyset\)
\(\mathbb{N}\)
\(\mathbb{Z}\)
\(\mathbb{Q}\)
\(\mathbb{R}\)
\(\mathbb{C}\)
\(\alpha\)
\(\beta\)
\(\gamma\)
\(\delta\)
\(\epsilon\)
\(\zeta\)
\(\eta\)
\(\theta\)
\(\iota\)
\(\kappa\)
\(\lambda\)
\(\mu\)
\(\nu\)
\(\xi\)
\(\pi\)
\(\rho\)
\(\sigma\)
\(\tau\)
\(\upsilon\)
\(\phi\)
\(\chi\)
\(\psi\)
\(\omega\)
\(\Gamma\)
\(\Delta\)
\(\Theta\)
\(\Lambda\)
\(\Xi\)
\(\Pi\)
\(\Sigma\)
\(\Upsilon\)
\(\Phi\)
\(\Psi\)
\(\Omega\)
\((a)\)
\([a]\)
\(\lbrace{a}\rbrace\)
\(\frac{a+b}{c+d}\)
\(\vec{a}\)
\(\binom {a} {b}\)
\({a \brack b}\)
\({a \brace b}\)
\(\sin\)
\(\cos\)
\(\tan\)
\(\cot\)
\(\sec\)
\(\csc\)
\(\sinh\)
\(\cosh\)
\(\tanh\)
\(\coth\)
\(\bigcap {a}\)
\(\bigcap_{b}^{} a\)
\(\bigcup {a}\)
\(\bigcup_{b}^{} a\)
\(\coprod {a}\)
\(\coprod_{b}^{} a\)
\(\prod {a}\)
\(\prod_{b}^{} a\)
\(\sum_{a=1}^b\)
\(\sum_{b}^{} a\)
\(\sum {a}\)
\(\underset{a \to b}\lim\)
\(\int {a}\)
\(\int_{b}^{} a\)
\(\iint {a}\)
\(\iint_{b}^{} a\)
\(\int_{a}^{b}{c}\)
\(\iint_{a}^{b}{c}\)
\(\iiint_{a}^{b}{c}\)
\(\oint{a}\)
\(\oint_{b}^{} a\)
Only an acid can turn blue litmus paper red
and NH4Cl which is option b is an acid salt formed as a result of a strong acid and weak base
NH4 + Cl = NH4Cl
option a is a basic salt formed as a result of a weak acid and strong base it can't turn blue litmus paper red
Option c is neutral formed a result of a strong acid and a strong base it will not react same as option d