Root Growth and Anatomy

Root Growth and Anatomy

Root growth begins with seed germination. When the plant embryo emerges from the seed, the radicle of the embryo forms the root system. The tip of the root is protected by the root cap, a structure exclusive to roots and unlike any other plant structure. The root cap is continuously replaced because it gets damaged easily as the root pushes through soil. The root tip can be divided into three zones: a zone of cell division, a zone of elongation, and a zone of maturation and differentiation (see the figure below). The zone of cell division is closest to the root tip; it is made up of the actively dividing cells of the root meristem. The zone of elongation is where the newly formed cells increase in length, thereby lengthening the root. Beginning at the first root hair is the zone of cell maturation where the root cells begin to differentiate into special cell types. All three zones are in the first centimeter or so of the root tip.

 This lateral section of a root tip is divided into three areas: an upper area of maturation, a middle area of elongation, and a lower area of cell division at the root tip. In the area of maturation, root hairs extend from the main root and cells are large and rectangular. The area of elongation has no root hairs, and the cells are still rectangular, but somewhat smaller. A vascular cylinder runs through the center of the root in the area of maturation and the area of elongation. In the area of cell division the cells are much smaller. Cells within this area are called the apical meristem. A layer of cells called the root cap surrounds the apical meristem.

A longitudinal view of the root reveals the zones of cell division, elongation, and maturation. Cell division occurs in the apical meristem.

The root has an outer layer of cells called the epidermis, which surrounds areas of ground tissue and vascular tissue. The epidermis provides protection and helps in absorption. Root hairs, which are extensions of root epidermal cells, increase the surface area of the root, greatly contributing to the absorption of water and minerals.

Inside the root, the ground tissue forms two regions: the cortex and the pith (see the figure below). Compared to stems, roots have lots of cortex and little pith. Both regions include cells that store photosynthetic products. The cortex is between the epidermis and the vascular tissue, whereas the pith lies between the vascular tissue and the center of the root.

 The micrograph shows a root cross section. Xylem cells, whose cell walls stain red, are in the middle of the root. Patches of phloem cells, stained blue, are located at the edge of the ring of xylem cells. The pericycle is a ring of cells on the outer edge of the xylem and phloem. Another ring of cells, called the endodermis, surrounds the pericycle. Everything inside the endodermis is the sclera, or vascular tissue. Outside the endermis is the cortex. The parenchyma cells that make up the cortex are the largest in the root. Outside the cortex is the exodermis. The exodermis is about two cells thick and is made up of sclerenchyma cells that stain red. Surrounding the exodermis is the epidermis, which is a single cell layer thick. A couple of root hairs project outward from the root.

Staining reveals different cell types in this light micrograph of a wheat (Triticum) root cross section. Sclerenchyma cells of the exodermis and xylem cells stain red, and phloem cells stain blue. Other cell types stain black. The stele, or vascular tissue, is the area inside endodermis (indicated by a green ring). Root hairs are visible outside the epidermis. (credit: scale-bar data from Matt Russell)

The vascular tissue in the root is arranged in the inner portion of the root, which is called the stele (see the figure below). A layer of cells known as the endodermis separates the stele from the ground tissue in the outer portion of the root. The endodermis is exclusive to roots, and serves as a checkpoint for materials entering the root’s vascular system. A waxy substance called suberin is present on the walls of the endodermal cells.

This waxy region, known as the Casparian strip, forces water and solutes to cross the plasma membranes of endodermal cells instead of slipping between the cells. This ensures that only materials required by the root pass through the endodermis, while toxic substances and pathogens are generally excluded. The outermost cell layer of the root’s vascular tissue is the pericycle, an area that can give rise to lateral roots. In dicot roots, the xylem and phloem of the stele are arranged alternately in an X shape, whereas in monocot roots, the vascular tissue is arranged in a ring around the pith.

 The cross section of a dicot root has an X-shaped structure at its center. The X is made up of many xylem cells. Phloem cells fill the space between the X. A ring of cells called the pericycle surrounds the xylem and phloem. The outer edge of the pericycle is called the endodermis. A thick layer of cortex tissue surrounds the pericycle. The cortex is enclosed in a layer of cells called the epidermis. The monocot root is similar to a dicot root, but the center of the root is filled with pith. The phloem cells form a ring around the pith. Round clusters of xylem cells are embedded in the phloem, symmetrically arranged around the central pith. The outer pericycle, endodermis, cortex and epidermis are the same in the dicot root.

In (left) typical dicots, the vascular tissue forms an X shape in the center of the root. In (right) typical monocots, the phloem cells and the larger xylem cells form a characteristic ring around the central pith.


Got questions about this content? Get access to an AI-Powered Study Help/Tutor you can chat with as you learn! Continue Learning With Ulearngo


[Attributions and Licenses]


This is a lesson from the tutorial, Plant Form and Physiology and you are encouraged to log in or register, so that you can track your progress.

Log In

Share Thoughts