Biology » Plant Form and Physiology » Transport of Water and Solutes in Plants

Movement of Water and Minerals in the Xylem

Movement of Water and Minerals in the Xylem

Solutes, pressure, gravity, and matric potential are all important for the transport of water in plants. Water moves from an area of higher total water potential (higher Gibbs free energy) to an area of lower total water potential. Gibbs free energy is the energy associated with a chemical reaction that can be used to do work. This is expressed as ΔΨ.

Transpiration is the loss of water from the plant through evaporation at the leaf surface. It is the main driver of water movement in the xylem. Transpiration is caused by the evaporation of water at the leaf–atmosphere interface; it creates negative pressure (tension) equivalent to –2 MPa at the leaf surface. This value varies greatly depending on the vapor pressure deficit, which can be negligible at high relative humidity (RH) and substantial at low RH. Water from the roots is pulled up by this tension. At night, when stomata shut and transpiration stops, the water is held in the stem and leaf by the adhesion of water to the cell walls of the xylem vessels and tracheids, and the cohesion of water molecules to each other. This is called the cohesion–tension theory of sap ascent.

Inside the leaf at the cellular level, water on the surface of mesophyll cells saturates the cellulose microfibrils of the primary cell wall. The leaf contains many large intercellular air spaces for the exchange of oxygen for carbon dioxide, which is required for photosynthesis. The wet cell wall is exposed to this leaf internal air space, and the water on the surface of the cells evaporates into the air spaces, decreasing the thin film on the surface of the mesophyll cells. This decrease creates a greater tension on the water in the mesophyll cells (see the figure below), thereby increasing the pull on the water in the xylem vessels.

The xylem vessels and tracheids are structurally adapted to cope with large changes in pressure. Rings in the vessels maintain their tubular shape, much like the rings on a vacuum cleaner hose keep the hose open while it is under pressure. Small perforations between vessel elements reduce the number and size of gas bubbles that can form via a process called cavitation. The formation of gas bubbles in xylem interrupts the continuous stream of water from the base to the top of the plant, causing a break termed an embolism in the flow of xylem sap. The taller the tree, the greater the tension forces needed to pull water, and the more cavitation events. In larger trees, the resulting embolisms can plug xylem vessels, making them non-functional.

Art Connection

 Illustration shows a pine tree. A blowup of the root indicates that negative water potential draws water from the soil into the root hairs, then into the root xylem. A blowup of the trunk indicates that cohesion and adhesion draws water up the xylem. A blowup of a leaf shows that transpiration draws water from the leaf through the stoma. Next to the tree is an arrow showing water potential, which is low at the roots and high in the leaves. The water potential varies from ~–0.2 MPA in the root cells to ~–0.6 MPa in the stem and from ~–1.5 MPa in the highest leaves, to ~–100 MPa in the atmosphere.

The cohesion–tension theory of sap ascent is shown. Evaporation from the mesophyll cells produces a negative water potential gradient that causes water to move upwards from the roots through the xylem.

Which of the following statements is false?

  1. Negative water potential draws water into the root hairs. Cohesion and adhesion draw water up the xylem. Transpiration draws water from the leaf.
  2. Negative water potential draws water into the root hairs. Cohesion and adhesion draw water up the phloem. Transpiration draws water from the leaf.
  3. Water potential decreases from the roots to the top of the plant.
  4. Water enters the plants through root hairs and exits through stoma.


Negative water potential draws water into the root hairs. Cohesion and adhesion draw water up the phloem. Transpiration draws water from the leaf.

Transpiration—the loss of water vapor to the atmosphere through stomata—is a passive process, meaning that metabolic energy in the form of ATP is not required for water movement. The energy driving transpiration is the difference in energy between the water in the soil and the water in the atmosphere. However, transpiration is tightly controlled.

Control of Transpiration

The atmosphere to which the leaf is exposed drives transpiration, but also causes massive water loss from the plant. Up to 90 percent of the water taken up by roots may be lost through transpiration.

Leaves are covered by a waxy cuticle on the outer surface that prevents the loss of water. Regulation of transpiration, therefore, is achieved primarily through the opening and closing of stomata on the leaf surface. Stomata are surrounded by two specialized cells called guard cells, which open and close in response to environmental cues such as light intensity and quality, leaf water status, and carbon dioxide concentrations. Stomata must open to allow air containing carbon dioxide and oxygen to diffuse into the leaf for photosynthesis and respiration. When stomata are open, however, water vapor is lost to the external environment, increasing the rate of transpiration. Therefore, plants must maintain a balance between efficient photosynthesis and water loss.

Plants have evolved over time to adapt to their local environment and reduce transpiration (see the figure below). Desert plant (xerophytes) and plants that grow on other plants (epiphytes) have limited access to water. Such plants usually have a much thicker waxy cuticle than those growing in more moderate, well-watered environments (mesophytes). Aquatic plants (hydrophytes) also have their own set of anatomical and morphological leaf adaptations.

Photo (a) shows a cactus with flat, oval, prickly leaves and a red cylindrical fruit on top; (b) is an orchid with a purple and white flower and glossy leaves; (c) shows a field of plants with long stems, many leaves and a bushy head of small golden flowers; (d) is a water lily in a pond. The water lily has round, flat leaves and a pink and white flower.

Plants are suited to their local environment. (a) Xerophytes, like this prickly pear cactus (Opuntia sp.) and (b) epiphytes such as this tropical Aeschynanthus perrottetii have adapted to very limited water resources. The leaves of a prickly pear are modified into spines, which lowers the surface-to-volume ratio and reduces water loss. Photosynthesis takes place in the stem, which also stores water. (b) A. perottetii leaves have a waxy cuticle that prevents water loss. (c) Goldenrod (Solidago sp.) is a mesophyte, well suited for moderate environments. (d) Hydrophytes, like this fragrant water lily (Nymphaea odorata), are adapted to thrive in aquatic environments. (credit a: modification of work by Jon Sullivan; credit b: modification of work by L. Shyamal/Wikimedia Commons; credit c: modification of work by Huw Williams; credit d: modification of work by Jason Hollinger)

Xerophytes and epiphytes often have a thick covering of trichomes or of stomata that are sunken below the leaf’s surface. Trichomes are specialized hair-like epidermal cells that secrete oils and substances. These adaptations impede air flow across the stomatal pore and reduce transpiration. Multiple epidermal layers are also commonly found in these types of plants.

Got questions about this content? Get access to an AI-Powered Study Help/Tutor you can chat with as you learn! Continue Learning With Ulearngo

[Attributions and Licenses]

This is a lesson from the tutorial, Plant Form and Physiology and you are encouraged to log in or register, so that you can track your progress.

Log In

Share Thoughts